IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp1245-1253.html
   My bibliography  Save this article

LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector

Author

Listed:
  • Jeong, Kyonghwa
  • Kim, Suyi

Abstract

In this article, we decomposed Korean industrial manufacturing greenhouse gas (GHG) emissions using the log mean Divisia index (LMDI) method, both multiplicatively and additively. Changes in industrial CO2 emissions from 1991 to 2009 may be studied by quantifying the contributions from changes in five different factors: overall industrial activity (activity effect), industrial activity mix (structure effect), sectoral energy intensity (intensity effect), sectoral energy mix (energy-mix effect) and CO2 emission factors (emission-factor effect). The results indicate that the structure effect and intensity effect played roles in reducing GHG emissions, and the structure effect played a bigger role than the intensity effect. The energy-mix effect increased GHG emissions, and the emission-factor effect decreased GHG emissions. The time series analysis indicates that the GHG emission pattern was changed before and after the International Monetary Fund (IMF) regime in Korea. The structure effect and the intensity effect had contributed more in emission reductions after rather than before the IMF regime in Korea. The structure effect and intensity effect have been stimulated since the high oil price period after 2001.

Suggested Citation

  • Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:1245-1253
    DOI: 10.1016/j.enpol.2013.06.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513005843
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    3. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    4. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    5. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    6. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    7. Diakoulaki, D. & Mavrotas, G. & Orkopoulos, D. & Papayannakis, L., 2006. "A bottom-up decomposition analysis of energy-related CO2 emissions in Greece," Energy, Elsevier, vol. 31(14), pages 2638-2651.
    8. Lee, Kihoon & Oh, Wankeun, 2006. "Analysis of CO2 emissions in APEC countries: A time-series and a cross-sectional decomposition using the log mean Divisia method," Energy Policy, Elsevier, vol. 34(17), pages 2779-2787, November.
    9. Park, Se-Hark, 1992. "Decomposition of industrial energy consumption : An alternative method," Energy Economics, Elsevier, vol. 14(4), pages 265-270, October.
    10. Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
    11. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    12. X. Q. Liu & B. W. Ang & H.L. Ong, 1992. "The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 161-178.
    13. Oh, Ilyoung & Wehrmeyer, Walter & Mulugetta, Yacob, 2010. "Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea," Energy Policy, Elsevier, vol. 38(1), pages 364-377, January.
    14. Jenne, C. A. & Cattell, R. K., 1983. "Structural change and energy efficiency in industry," Energy Economics, Elsevier, vol. 5(2), pages 114-123, April.
    15. Reitler, W. & Rudolph, M. & Schaefer, H., 1987. "Analysis of the factors influencing energy consumption in industry : A revised method," Energy Economics, Elsevier, vol. 9(3), pages 145-148, July.
    16. Richard B. Howarth & Lee Schipper, 1991. "Manufacturing Energy Use in Eight OECD Countries: Trends through 1988," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 15-40.
    17. Kwon, Tae-Hyeong, 2005. "Decomposition of factors determining the trend of CO2 emissions from car travel in Great Britain (1970-2000)," Ecological Economics, Elsevier, vol. 53(2), pages 261-275, April.
    18. Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
    19. Boyd, Gale A. & Hanson, Donald A. & Sterner, Thomas, 1988. "Decomposition of changes in energy intensity : A comparison of the Divisia index and other methods," Energy Economics, Elsevier, vol. 10(4), pages 309-312, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    LMDI; Structure effect; Intensity effect;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:1245-1253. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.