IDEAS home Printed from
   My bibliography  Save this article

Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation


  • Sumabat, Ana Karmela
  • Lopez, Neil Stephen
  • Yu, Krista Danielle
  • Hao, Han
  • Li, Richard
  • Geng, Yong
  • Chiu, Anthony S.F.


In order to address climate change and attain sustainable growth, there is a need to quantify driving factors in CO2 emissions in the developing countries. While information for accounting of Philippine CO2 emissions are abound, there is a lack of analytical studies on the driving forces. In this study, the logarithmic mean Divisia index (LMDI) is used to quantify the driving forces of changes in Philippine CO2 emissions from 1991 to 2014. The top-down approach described from 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines was used to estimate CO2 emissions from national fuel combustion and electricity generation. Results affirm the negative impacts of economic growth and higher standard of living to CO2 emissions, and reveal the significant damages inconsistent energy structures deliver to the emissions performance of a country. This has never been highlighted in previous studies in ASEAN and other developing countries. Policies to protect the energy structure from fluctuating oil prices, to improve energy planning capabilities, and to promote industrial symbiosis are recommended. On the other hand, the contribution of economic activity and energy intensity to CO2 emissions offset each other.

Suggested Citation

  • Sumabat, Ana Karmela & Lopez, Neil Stephen & Yu, Krista Danielle & Hao, Han & Li, Richard & Geng, Yong & Chiu, Anthony S.F., 2016. "Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation," Applied Energy, Elsevier, vol. 164(C), pages 795-804.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:795-804
    DOI: 10.1016/j.apenergy.2015.12.023

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    2. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    3. Lee, Chien-Chiang & Chang, Chun-Ping, 2008. "Energy consumption and economic growth in Asian economies: A more comprehensive analysis using panel data," Resource and Energy Economics, Elsevier, vol. 30(1), pages 50-65, January.
    4. Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
    5. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    6. Fei, Li & Dong, Suocheng & Xue, Li & Liang, Quanxi & Yang, Wangzhou, 2011. "Energy consumption-economic growth relationship and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 39(2), pages 568-574, February.
    7. Tang, Chor Foon & Tan, Bee Wah, 2015. "The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam," Energy, Elsevier, vol. 79(C), pages 447-454.
    8. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    9. Shi, Xunpeng, 2014. "Setting effective mandatory energy efficiency standards and labelling regulations: A review of best practices in the Asia Pacific region," Applied Energy, Elsevier, vol. 133(C), pages 135-143.
    10. Wang, Yuan & Wang, Yichen & Zhou, Jing & Zhu, Xiaodong & Lu, Genfa, 2011. "Energy consumption and economic growth in China: A multivariate causality test," Energy Policy, Elsevier, vol. 39(7), pages 4399-4406, July.
    11. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    12. Liu, Zhu & Geng, Yong & Lindner, Soeren & Guan, Dabo, 2012. "Uncovering China’s greenhouse gas emission from regional and sectoral perspectives," Energy, Elsevier, vol. 45(1), pages 1059-1068.
    13. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    14. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    15. Van Hoa, Tran & Limskul, Kitti, 2013. "Economic impact of CO2 emissions on Thailand's growth and climate change mitigation policy: A modelling analysis," Economic Modelling, Elsevier, vol. 33(C), pages 651-658.
    16. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    17. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    18. Guo, Bin & Geng, Yong & Franke, Bernd & Hao, Han & Liu, Yaxuan & Chiu, Anthony, 2014. "Uncovering China’s transport CO2 emission patterns at the regional level," Energy Policy, Elsevier, vol. 74(C), pages 134-146.
    19. Acosta, Lilibeth A. & Enano, Nelson H. & Magcale-Macandog, Damasa B. & Engay, Kathreena G. & Herrera, Maria Noriza Q. & Nicopior, Ozzy Boy S. & Sumilang, Mic Ivan V. & Eugenio, Jemimah Mae A. & Lucht,, 2013. "How sustainable is bioenergy production in the Philippines? A conjoint analysis of knowledge and opinions of people with different typologies," Applied Energy, Elsevier, vol. 102(C), pages 241-253.
    20. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
    21. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    22. Liu, Zhu & Liang, Sai & Geng, Yong & Xue, Bing & Xi, Fengming & Pan, Ying & Zhang, Tianzhu & Fujita, Tsuyoshi, 2012. "Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing," Energy, Elsevier, vol. 37(1), pages 245-254.
    23. Shahiduzzaman, Md. & Layton, Allan, 2015. "Changes in CO2 emissions over business cycle recessions and expansions in the United States: A decomposition analysis," Applied Energy, Elsevier, vol. 150(C), pages 25-35.
    24. Bakhtyar, B. & Sopian, K. & Zaharim, A. & Salleh, E. & Lim, C.H., 2013. "Potentials and challenges in implementing feed-in tariff policy in Indonesia and the Philippines," Energy Policy, Elsevier, vol. 60(C), pages 418-423.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:795-804. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.