IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v70y2011i11p2012-2019.html
   My bibliography  Save this article

Structural decomposition analysis and input-output subsystems: Changes in CO2 emissions of Spanish service sectors (2000-2005)

Author

Listed:
  • Butnar, Isabela
  • Llop, Maria

Abstract

The analysis of gas emissions by an input-output subsystem approach provides detailed insight into pollution generation in an economy. Structural decomposition analysis, on the other hand, identifies the factors behind the changes in key variables over time. Extending the input-output subsystem model to account for the changes in these variables reveals the channels by which environmental burdens are caused and transmitted throughout the production system. In this paper we propose a decomposition of the changes in the components of CO2 emissions captured by an input-output subsystems representation. The empirical application is for the Spanish service sector, and the economic and environmental data are for years 2000 and 2005. Our results show that services increased their CO2 emissions mainly because of a rise in the emissions generated by non-services to cover the final demand for services. The decomposed effects show a decrease in CO2 emissions due to technological changes between 2000 and 2005 compensated by an increase in emissions caused by the rise in final demand of services. Finally, large asymmetries exist not only in the quantitative changes in the CO2 emissions of the various services but also in the decomposed effects of these changes.

Suggested Citation

  • Butnar, Isabela & Llop, Maria, 2011. "Structural decomposition analysis and input-output subsystems: Changes in CO2 emissions of Spanish service sectors (2000-2005)," Ecological Economics, Elsevier, vol. 70(11), pages 2012-2019, September.
  • Handle: RePEc:eee:ecolec:v:70:y:2011:i:11:p:2012-2019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800911002060
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erik Dietzenbacher & Bart Los, 2000. "Structural Decomposition Analyses with Dependent Determinants," Economic Systems Research, Taylor & Francis Journals, vol. 12(4), pages 497-514.
    2. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    3. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    4. Mette Wier, 1998. "Sources of Changes in Emissions from Energy: A Structural Decomposition Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 10(2), pages 99-112.
    5. Roberto Scazzieri, 1990. "Vertical Integration in Economic Theory," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 13(1), pages 20-46, September.
    6. J. S·nchez-ChÛliz & R. Duarte, 2003. "Analysing pollution by way of vertically integrated coefficients, with an application to the water sector in Aragon," Cambridge Journal of Economics, Oxford University Press, vol. 27(3), pages 433-448, May.
    7. Llop, Maria, 2007. "Economic structure and pollution intensity within the environmental input-output framework," Energy Policy, Elsevier, vol. 35(6), pages 3410-3417, June.
    8. Richard F. Garbaccio & Mun S. Ho & Dale W. Jorgenson, 1999. "Why Has the Energy-Output Ratio Fallen in China?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 63-91.
    9. Pasinetti, Luigi L, 1988. "Growing Subsystems, Vertically Hyper-integrated Sectors and the Labour Theory of Value," Cambridge Journal of Economics, Oxford University Press, vol. 12(1), pages 125-134, March.
    10. Alcantara, Vicent & Duarte, Rosa, 2004. "Comparison of energy intensities in European Union countries. Results of a structural decomposition analysis," Energy Policy, Elsevier, vol. 32(2), pages 177-189, January.
    11. X. Q. Liu & B. W. Ang & H.L. Ong, 1992. "The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 161-178.
    12. Casler, Stephen & Hannon, Bruce, 1989. "Readjustment potentials in industrial energy efficiency and structure," Journal of Environmental Economics and Management, Elsevier, vol. 17(1), pages 93-108, July.
    13. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    14. Alcántara, Vicent & Padilla, Emilio, 2009. "Input-output subsystems and pollution: An application to the service sector and CO2 emissions in Spain," Ecological Economics, Elsevier, vol. 68(3), pages 905-914, January.
    15. Johan Deprez, 1990. "Vertical Integration and the Problem of Fixed Capital," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 13(1), pages 47-64, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Butnar, Isabela & Llop Llop, Maria, 2010. "Structural decomposition analysis and input-output subsystems: An application to Spanish CO2 emissions," Working Papers 2072/151546, Universitat Rovira i Virgili, Department of Economics.
    2. Llop, Maria, 2017. "Changes in energy output in a regional economy: A structural decomposition analysis," Energy, Elsevier, vol. 128(C), pages 145-151.
    3. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
    4. Maria Llop & Richard S.J. Tol, 2013. "Decomposition of sectoral greenhouse gas emissions: a subsystem input-output model for the Republic of Ireland," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(9), pages 1316-1331, November.
    5. Valeria Cosmo & Marie Hyland & Maria Llop, 2014. "Disentangling Water Usage in the European Union: A Decomposition Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1463-1479, March.
    6. Maria Llop & Josep-Maria Arauzo-Carod, 2012. "Identifying the economic impact behind a cultural asset: an input–output subsystems analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(3), pages 861-877, December.
    7. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
    8. Alcántara, Vicent & Padilla, Emilio, 2009. "Input-output subsystems and pollution: An application to the service sector and CO2 emissions in Spain," Ecological Economics, Elsevier, vol. 68(3), pages 905-914, January.
    9. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    10. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
    11. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    12. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
    13. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    14. Anne Owen & Richard Wood & John Barrett & Andrew Evans, 2016. "Explaining value chain differences in MRIO databases through structural path decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 243-272, June.
    15. Cazcarro, Ignacio & Duarte, Rosa & Sánchez-Chóliz, Julio, 2013. "Economic growth and the evolution of water consumption in Spain: A structural decomposition analysis," Ecological Economics, Elsevier, vol. 96(C), pages 51-61.
    16. Mazzanti, Massimiliano & Montini, Anna, 2010. "Embedding the drivers of emission efficiency at regional level -- Analyses of NAMEA data," Ecological Economics, Elsevier, vol. 69(12), pages 2457-2467, October.
    17. Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.
    18. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    19. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    20. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:70:y:2011:i:11:p:2012-2019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.