IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i3p492-499.html
   My bibliography  Save this article

CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques

Author

Listed:
  • Hatzigeorgiou, Emmanouil
  • Polatidis, Heracles
  • Haralambopoulos, Dias

Abstract

This paper deals with the decomposition analysis of energy-related CO2 emissions in Greece from 1990 to 2002. The Arithmetic Mean Divisia Index (AMDI) and the Logarithmic Mean Divisia Index (LMDI) techniques are applied and changes in CO2 emissions are decomposed into four factors: income effect, energy intensity effect, fuel share effect and population effect. The period-wise and time series analyses show that the biggest contributor to the rise in CO2 emissions in Greece is the income effect; on the contrary, the energy intensity effect is mainly responsible for the decrease in CO2 emissions. A comparison of the results of the two techniques gave an insight in the intricacies of energy decomposition. Finally, conclusions and future areas of research are presented.

Suggested Citation

  • Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2008. "CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques," Energy, Elsevier, vol. 33(3), pages 492-499.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:3:p:492-499
    DOI: 10.1016/j.energy.2007.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207001776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christodoulakis, Nicos M. & Kalyvitis, Sarantis C. & Lalas, Dimitrios P. & Pesmajoglou, Stylianos, 2000. "Forecasting energy consumption and energy related CO2 emissions in Greece: An evaluation of the consequences of the Community Support Framework II and natural gas penetration," Energy Economics, Elsevier, vol. 22(4), pages 395-422, August.
    2. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    3. Ang, B.W., 1995. "Decomposition methodology in industrial energy demand analysis," Energy, Elsevier, vol. 20(11), pages 1081-1095.
    4. Hondroyiannis, George & Lolos, Sarantis & Papapetrou, Evangelia, 2002. "Energy consumption and economic growth: assessing the evidence from Greece," Energy Economics, Elsevier, vol. 24(4), pages 319-336, July.
    5. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    6. Choi, Ki-Hong & Ang, B. W., 2001. "A time-series analysis of energy-related carbon emissions in Korea," Energy Policy, Elsevier, vol. 29(13), pages 1155-1161, November.
    7. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
    8. Diakoulaki, D. & Mavrotas, G. & Orkopoulos, D. & Papayannakis, L., 2006. "A bottom-up decomposition analysis of energy-related CO2 emissions in Greece," Energy, Elsevier, vol. 31(14), pages 2638-2651.
    9. Pierre Perron, 1994. "Trend, Unit Root and Structural Change in Macroeconomic Time Series," Palgrave Macmillan Books, in: B. Bhaskara Rao (ed.), Cointegration, chapter 4, pages 113-146, Palgrave Macmillan.
    10. Zhang, F. Q. & Ang, B. W., 2001. "Methodological issues in cross-country/region decomposition of energy and environment indicators," Energy Economics, Elsevier, vol. 23(2), pages 179-190, March.
    11. Lise, Wietze, 2006. "Decomposition of CO2 emissions over 1980-2003 in Turkey," Energy Policy, Elsevier, vol. 34(14), pages 1841-1852, September.
    12. Sun, J.W. & Malaska, P., 1998. "CO2 emission intensities in developed countries 1980–1994," Energy, Elsevier, vol. 23(2), pages 105-112.
    13. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    14. Floros, Nikolaos & Vlachou, Andriana, 2005. "Energy demand and energy-related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax," Energy Economics, Elsevier, vol. 27(3), pages 387-413, May.
    15. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    16. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.
    17. Vlachou, Andriana & Vassos, Spyros & Andrikopoulos, Andreas, 1996. "Energy and environment: Reducing CO2 emissions from the electric power industry," Journal of Policy Modeling, Elsevier, vol. 18(4), pages 343-376, August.
    18. Christodoulakis, Nicos M. & Kalyvitis, Sarantis, 2000. "The Effects of the Second Community Support Framework 1994-99 on the Greek Economy," Journal of Policy Modeling, Elsevier, vol. 22(5), pages 611-624, September.
    19. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    20. Robin L. Lumsdaine & David H. Papell, 1997. "Multiple Trend Breaks And The Unit-Root Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 212-218, May.
    21. Jushan Bai & Pierre Perron, 2003. "Critical values for multiple structural change tests," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 72-78, June.
    22. Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
    23. Lee, Kihoon & Oh, Wankeun, 2006. "Analysis of CO2 emissions in APEC countries: A time-series and a cross-sectional decomposition using the log mean Divisia method," Energy Policy, Elsevier, vol. 34(17), pages 2779-2787, November.
    24. Zervas, Efthimios & Poulopoulos, Stavros & Philippopoulos, Constantinos, 2006. "CO2 emissions change from the introduction of diesel passenger cars: Case of Greece," Energy, Elsevier, vol. 31(14), pages 2915-2925.
    25. Rutger Hoekstra, 2005. "Economic Growth, Material Flows and the Environment," Books, Edward Elgar Publishing, number 3700.
    26. Christodoulakis, Nicos M. & Kalyvitis, Sarantis C., 1997. "The demand for energy in Greece: assessing the effects of the Community Support Framework 1994-1999," Energy Economics, Elsevier, vol. 19(4), pages 393-416, October.
    27. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
    28. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    29. Stephen Leybourne & Paul Newbold, 2003. "Spurious rejections by cointegration tests induced by structural breaks," Applied Economics, Taylor & Francis Journals, vol. 35(9), pages 1117-1121.
    30. Jeroen C.J.M. van den Bergh (ed.), 1999. "Handbook of Environmental and Resource Economics," Books, Edward Elgar Publishing, number 801.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
    2. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    3. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    4. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "CO2 emissions, GDP and energy intensity: A multivariate cointegration and causality analysis for Greece, 1977-2007," Applied Energy, Elsevier, vol. 88(4), pages 1377-1385, April.
    5. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    6. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    7. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
    8. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    9. Brittle, Shane, 2009. "Ricardian Equivalence and the Efficacy of Fiscal Policy in Australia," Economics Working Papers wp09-10, School of Economics, University of Wollongong, NSW, Australia.
    10. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    11. Zhang, Yan & Zhang, Jinyun & Yang, Zhifeng & Li, Shengsheng, 2011. "Regional differences in the factors that influence China’s energy-related carbon emissions, and potential mitigation strategies," Energy Policy, Elsevier, vol. 39(12), pages 7712-7718.
    12. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    13. Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
    14. Victor Moutinho & José Manuel Xavier & Pedro Miguel Silva, 2014. "Examining the energy-related CO2 emissions using Decomposition Approach in EU-15 before and after the Kyoto Protocol," CEFAGE-UE Working Papers 2014_17, University of Evora, CEFAGE-UE (Portugal).
    15. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    16. Pahlavani, Mosayeb & Valadkhani, Abbas & Worthington, Andrew, 2005. "Testing for Structural Breaks in Australia's Monetary Aggregates and Interest Rates: An Application of the Innovational Outlier and Additive Outlier Models," Economics Working Papers wp05-02, School of Economics, University of Wollongong, NSW, Australia.
    17. O’ Mahony, Tadhg & Zhou, Peng & Sweeney, John, 2012. "The driving forces of change in energy-related CO2 emissions in Ireland: A multi-sectoral decomposition from 1990 to 2007," Energy Policy, Elsevier, vol. 44(C), pages 256-267.
    18. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    19. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    20. Ma, Chunbo & Stern, David I., 2008. "Biomass and China's carbon emissions: A missing piece of carbon decomposition," Energy Policy, Elsevier, vol. 36(7), pages 2517-2526, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:3:p:492-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.