IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v32y2014icp854-868.html
   My bibliography  Save this article

Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs

Author

Listed:
  • Sener, Can
  • Fthenakis, Vasilis

Abstract

This paper presents a review and assessment of public-policy options for supporting large-scale penetration of photovoltaics (PV) in the United States. The goal therein is to reduce the costs both of solar technology and of grid integration, so enabling solar deployment nationwide. In this context, we analyze the solar PV markets and the solar industry globally, and discuss the external benefits of PV that must be advertised, and perhaps marketed, to assure an increase in social support for PV. We discuss existing energy-policy mixes in those countries leading to the development of solar power, highlighting the lessons learnt, and outlining areas of improvement of the existing policy mix in the United States. We highlight that there is a need for a holistic approach including social in addition to economic considerations, and we discuss policy options for supporting the continuation of PV market growth when the current investment tax credits expire.

Suggested Citation

  • Sener, Can & Fthenakis, Vasilis, 2014. "Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 854-868.
  • Handle: RePEc:eee:rensus:v:32:y:2014:i:c:p:854-868
    DOI: 10.1016/j.rser.2014.01.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114000410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.01.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fthenakis, Vasilis, 2009. "Sustainability of photovoltaics: The case for thin-film solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2746-2750, December.
    2. Fthenakis, Vasilis & Mason, James E. & Zweibel, Ken, 2009. "The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US," Energy Policy, Elsevier, vol. 37(2), pages 387-399, February.
    3. Lauber, Volkmar, 2004. "REFIT and RPS: options for a harmonised Community framework," Energy Policy, Elsevier, vol. 32(12), pages 1405-1414, August.
    4. Ringel, Marc, 2006. "Fostering the use of renewable energies in the European Union: the race between feed-in tariffs and green certificates," Renewable Energy, Elsevier, vol. 31(1), pages 1-17.
    5. Bergek, Anna & Jacobsson, Staffan, 2010. "Are tradable green certificates a cost-efficient policy driving technical change or a rent-generating machine? Lessons from Sweden 2003-2008," Energy Policy, Elsevier, vol. 38(3), pages 1255-1271, March.
    6. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M., 2008. "Germany's solar cell promotion: Dark clouds on the horizon," Energy Policy, Elsevier, vol. 36(11), pages 4198-4204, November.
    7. Rowlands, Ian H., 2005. "Envisaging feed-in tariffs for solar photovoltaic electricity: European lessons for Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(1), pages 51-68, February.
    8. Timilsina, Govinda R. & Kurdgelashvili, Lado & Narbel, Patrick A., 2011. "A review of solar energy : markets, economics and policies," Policy Research Working Paper Series 5845, The World Bank.
    9. Huang, Ming-Yuan & Alavalapati, Janaki R.R. & Carter, Douglas R. & Langholtz, Matthew H., 2007. "Is the choice of renewable portfolio standards random?," Energy Policy, Elsevier, vol. 35(11), pages 5571-5575, November.
    10. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    11. repec:zbw:rwirep:0040 is not listed on IDEAS
    12. Srinivasan, Sunderasan, 2009. "Subsidy policy and the enlargement of choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2728-2733, December.
    13. Chandler, Jess, 2009. "Trendy solutions: Why do states adopt Sustainable Energy Portfolio Standards?," Energy Policy, Elsevier, vol. 37(8), pages 3274-3281, August.
    14. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    15. Nikolakakis, Thomas & Fthenakis, Vasilis, 2011. "The optimum mix of electricity from wind- and solar-sources in conventional power systems: Evaluating the case for New York State," Energy Policy, Elsevier, vol. 39(11), pages 6972-6980.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    2. Overholm, Harald, 2015. "Spreading the rooftop revolution: What policies enable solar-as-a-service?," Energy Policy, Elsevier, vol. 84(C), pages 69-79.
    3. Claudio A Agostini & Shahriyar Nasirov & Carlos Silva, 2014. "Solar PV Planning Toward Sustainable Development in Chile: Challenges and Recommendations," Working Papers wp_038, Adolfo Ibáñez University, School of Government.
    4. Hairat, Manish Kumar & Ghosh, Sajal, 2017. "100GW solar power in India by 2022 – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1041-1050.
    5. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    6. Cucchiella, Federica & D׳Adamo, Idiano & Rosa, Paolo, 2015. "End-of-Life of used photovoltaic modules: A financial analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 552-561.
    7. Michael Child & Teresa Haukkala & Christian Breyer, 2017. "The Role of Solar Photovoltaics and Energy Storage Solutions in a 100% Renewable Energy System for Finland in 2050," Sustainability, MDPI, vol. 9(8), pages 1-25, August.
    8. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    9. García-Álvarez, María Teresa & Cabeza-García, Laura & Soares, Isabel, 2018. "Assessment of energy policies to promote photovoltaic generation in the European Union," Energy, Elsevier, vol. 151(C), pages 864-874.
    10. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
    11. Veldhuis, A.J. & Reinders, A.H.M.E., 2015. "Reviewing the potential and cost-effectiveness of off-grid PV systems in Indonesia on a provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 757-769.
    12. Mahmut Unsal Sasmaz & Emre Sakar & Yunus Emre Yayla & Ulas Akkucuk, 2020. "The Relationship between Renewable Energy and Human Development in OECD Countries: A Panel Data Analysis," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    13. Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Nematollahi, Omid & Kiavarz, Majid & Alavipanah, Seyed Kazem, 2020. "On the effect of geographical, topographic and climatic conditions on feed-in tariff optimization for solar photovoltaic electricity generation: A case study in Iran," Renewable Energy, Elsevier, vol. 153(C), pages 430-439.
    14. Best, Rohan & Burke, Paul J., 2018. "Adoption of solar and wind energy: The roles of carbon pricing and aggregate policy support," Energy Policy, Elsevier, vol. 118(C), pages 404-417.
    15. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2018. "Economics of renewable energy expansion and security of supply: A dynamic simulation of the German electricity market," Applied Energy, Elsevier, vol. 231(C), pages 1268-1284.
    16. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    17. Zhang, Fang, 2023. "Does not having an NDB disadvantage a country in finance mobilization for the energy transition? A comparative analysis of the solar PV deployment in the United States, Germany and China," Energy Policy, Elsevier, vol. 172(C).
    18. Luthra, Sunil & Govindan, Kannan & Kharb, Ravinder K. & Mangla, Sachin Kumar, 2016. "Evaluating the enablers in solar power developments in the current scenario using fuzzy DEMATEL: An Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 379-397.
    19. Luthra, Sunil & Mangla, Sachin Kumar & Kharb, Ravinder K., 2015. "Sustainable assessment in energy planning and management in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 58-73.
    20. Lee, Minhyun & Hong, Taehoon & Yoo, Hyunji & Koo, Choongwan & Kim, Jimin & Jeong, Kwangbok & Jeong, Jaewook & Ji, Changyoon, 2017. "Establishment of a base price for the Solar Renewable Energy Credit (SREC) from the perspective of residents and state governments in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1066-1080.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    2. Lüthi, Sonja & Wüstenhagen, Rolf, 2012. "The price of policy risk — Empirical insights from choice experiments with European photovoltaic project developers," Energy Economics, Elsevier, vol. 34(4), pages 1001-1011.
    3. Verbruggen, Aviel & Lauber, Volkmar, 2012. "Assessing the performance of renewable electricity support instruments," Energy Policy, Elsevier, vol. 45(C), pages 635-644.
    4. Schallenberg-Rodriguez, Julieta, 2017. "Renewable electricity support systems: Are feed-in systems taking the lead?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1422-1439.
    5. Martin, Nigel & Rice, John, 2013. "The solar photovoltaic feed-in tariff scheme in New South Wales, Australia," Energy Policy, Elsevier, vol. 61(C), pages 697-706.
    6. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    7. Farah Roslan & Ștefan Cristian Gherghina & Jumadil Saputra & Mário Nuno Mata & Farah Diana Mohmad Zali & José Moleiro Martins, 2022. "A Panel Data Approach towards the Effectiveness of Energy Policies in Fostering the Implementation of Solar Photovoltaic Technology: Empirical Evidence for Asia-Pacific," Energies, MDPI, vol. 15(10), pages 1-22, May.
    8. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
    9. Wiser, Ryan & Barbose, Galen & Holt, Edward, 2011. "Supporting solar power in renewables portfolio standards: Experience from the United States," Energy Policy, Elsevier, vol. 39(7), pages 3894-3905, July.
    10. van Alphen, Klaas & Kunz, Huden S. & Hekkert, Marko P., 2008. "Policy measures to promote the widespread utilization of renewable energy technologies for electricity generation in the Maldives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1959-1973, September.
    11. Li, Shin-Je & Chang, Ting-Huan & Chang, Ssu-Li, 2017. "The policy effectiveness of economic instruments for the photovoltaic and wind power development in the European Union," Renewable Energy, Elsevier, vol. 101(C), pages 660-666.
    12. Shen, Neng & Deng, Rumeng & Liao, Haolan & Shevchuk, Oleksandr, 2020. "Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review," Utilities Policy, Elsevier, vol. 64(C).
    13. Martin, Nigel J. & Rice, John L., 2017. "Examining the use of concept analysis and mapping software for renewable energy feed-in tariff design," Renewable Energy, Elsevier, vol. 113(C), pages 211-220.
    14. Darmani, Anna, 2015. "Renewable energy investors in Sweden: A cross-subsector analysis of dynamic capabilities," Utilities Policy, Elsevier, vol. 37(C), pages 46-57.
    15. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, vol. 5(2), pages 1-32, February.
    16. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    17. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    18. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    19. Youhyun Lee & Inseok Seo, 2019. "Sustainability of a Policy Instrument: Rethinking the Renewable Portfolio Standard in South Korea," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    20. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:32:y:2014:i:c:p:854-868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.