IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i1p267-281.html
   My bibliography  Save this article

Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation

Author

Listed:
  • Laleman, Ruben
  • Albrecht, Johan
  • Dewulf, Jo

Abstract

Photovoltaic installations (PV-systems) are heavily promoted in Europe. In this paper, the Life Cycle Analysis (LCA) method is used to find out whether the high subsidy cost can be justified by the environmental benefits. Most existing LCAs of PV only use one-dimensional indicators and are only valid for regions with a high solar irradiation. This paper, however, presents a broad environmental evaluation of residential PV-systems for regions with a rather low solar irradiation of 900-1000Â kWh/m2/year, a value typical for Northern Europe and Canada. Based on the Ecoinvent LCA database, six Life Cycle Impact Assessment (LCIA) methods were considered for six different PV-technologies; the comprehensive Eco-Indicator 99 (EI 99) with its three perspectives (Hierarchist, Egalitarian and Individualistic) next to three one-dimensional indicators, namely Cumulative Energy Demand (CED), Global Warming Potential (GWP) and the Energy Payback Time (EPT). For regions with low solar irradiation, we found that the EPT is less than 5 years. The Global Warming Potential of PV-electricity is about 10 times lower than that of electricity from a coal fired plant, but 4 times higher when compared to a nuclear power plant or a wind farm. Surprisingly, our results from the more comprehensive EI 99 assessment method do not correlate at all with our findings based on EPT and GWP. The results from the Individualist perspective are strongly influenced by the weighting of the different environmental aspects, which can be misleading. Therefore, to obtain a well-balanced environmental assessment of energy technologies, we recommend a carefully evaluated combination of various impact assessment methods.

Suggested Citation

  • Laleman, Ruben & Albrecht, Johan & Dewulf, Jo, 2011. "Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 267-281, January.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:267-281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00312-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alsema, Erik, 1998. "Energy requirements of thin-film solar cell modules--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(4), pages 387-415, December.
    2. Fthenakis, Vasilis, 2009. "Sustainability of photovoltaics: The case for thin-film solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2746-2750, December.
    3. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M., 2008. "Germany's solar cell promotion: Dark clouds on the horizon," Energy Policy, Elsevier, vol. 36(11), pages 4198-4204, November.
    4. Fthenakis, Vasilis M. & Kim, Hyung Chul, 2007. "Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study," Energy Policy, Elsevier, vol. 35(4), pages 2549-2557, April.
    5. Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
    6. Pacca, Sergio & Sivaraman, Deepak & Keoleian, Gregory A., 2007. "Parameters affecting the life cycle performance of PV technologies and systems," Energy Policy, Elsevier, vol. 35(6), pages 3316-3326, June.
    7. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    8. Alsema, E. A. & Nieuwlaar, E., 2000. "Energy viability of photovoltaic systems," Energy Policy, Elsevier, vol. 28(14), pages 999-1010, November.
    9. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    10. Stoppato, A., 2008. "Life cycle assessment of photovoltaic electricity generation," Energy, Elsevier, vol. 33(2), pages 224-232.
    11. repec:zbw:rwirep:0040 is not listed on IDEAS
    12. Raugei, Marco & Bargigli, Silvia & Ulgiati, Sergio, 2007. "Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si," Energy, Elsevier, vol. 32(8), pages 1310-1318.
    13. Raugei, Marco & Frankl, Paolo, 2009. "Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks," Energy, Elsevier, vol. 34(3), pages 392-399.
    14. Martínez, E. & Sanz, F. & Pellegrini, S. & Jiménez, E. & Blanco, J., 2009. "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 667-673.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allen H. Hu & Lance Hongwei Huang & Sylvia Lou & Chien-Hung Kuo & Chin-Yao Huang & Ke-Jen Chian & Hao-Ting Chien & Hwen-Fen Hong, 2016. "Assessment of the Carbon Footprint, Social Benefit of Carbon Reduction, and Energy Payback Time of a High-Concentration Photovoltaic System," Sustainability, MDPI, Open Access Journal, vol. 9(1), pages 1-20, December.
    2. Ravikumar, Dwarakanath & Wender, Ben & Seager, Thomas P. & Fraser, Matthew P. & Tao, Meng, 2017. "A climate rationale for research and development on photovoltaics manufacture," Applied Energy, Elsevier, vol. 189(C), pages 245-256.
    3. Si, Pengfei & Feng, Ya & Lv, Yuexia & Rong, Xiangyang & Pan, Yungang & Liu, Xichen & Yan, Jinyue, 2017. "An optimization method applied to active solar energy systems for buildings in cold plateau areas – The case of Lhasa," Applied Energy, Elsevier, vol. 194(C), pages 487-498.
    4. Cucchiella, Federica & D'Adamo, Idiano, 2012. "Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5245-5259.
    5. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    6. Muriel, D.F. & Tinoco, R.O. & Filardo, B.P. & Cowen, E.A., 2016. "Development of a novel, robust, sustainable and low cost self-powered water pump for use in free-flowing liquid streams," Renewable Energy, Elsevier, vol. 91(C), pages 466-476.
    7. repec:eee:rensus:v:81:y:2018:i:p1:p:250-279 is not listed on IDEAS
    8. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, Open Access Journal, vol. 3(2), pages 1-22, February.
    9. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    10. Lamnatou, Chr. & Chemisana, D. & Mateus, R. & Almeida, M.G. & Silva, S.M., 2015. "Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems," Renewable Energy, Elsevier, vol. 75(C), pages 833-846.
    11. Phillips, Jason, 2013. "Determining the sustainability of large-scale photovoltaic solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 435-444.
    12. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang & Liu, Lei, 2012. "Life cycle assessment of a solar combined cooling heating and power system in different operation strategies," Applied Energy, Elsevier, vol. 92(C), pages 843-853.
    13. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    14. Danielle Devogelaer, 2013. "Working Paper 07-13 - Walking the green mile in Employment - Employment projections for a green future," Working Papers 1307, Federal Planning Bureau, Belgium.
    15. Cherrington, R. & Goodship, V. & Longfield, A. & Kirwan, K., 2013. "The feed-in tariff in the UK: A case study focus on domestic photovoltaic systems," Renewable Energy, Elsevier, vol. 50(C), pages 421-426.
    16. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    17. Radhi, Hassan, 2012. "Trade-off between environmental and economic implications of PV systems integrated into the UAE residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2468-2474.
    18. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    19. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    20. Peng, Jinqing & Lu, Lin, 2013. "Investigation on the development potential of rooftop PV system in Hong Kong and its environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 149-162.
    21. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    22. repec:eee:rensus:v:81:y:2018:i:p1:p:1206-1225 is not listed on IDEAS
    23. Petrillo, Antonella & De Felice, Fabio & Jannelli, Elio & Autorino, Claudio & Minutillo, Mariagiovanna & Lavadera, Antonio Lubrano, 2016. "Life cycle assessment (LCA) and life cycle cost (LCC) analysis model for a stand-alone hybrid renewable energy system," Renewable Energy, Elsevier, vol. 95(C), pages 337-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:267-281. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.