IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v76y2017icp1153-1162.html
   My bibliography  Save this article

Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis

Author

Listed:
  • Wang, Zhaohua
  • Li, Yi
  • Wang, Ke
  • Huang, Zhimin

Abstract

There is widespread concern that environmental factor may not be playing a pivotal role in influencing the generation performance of solar photovoltaic (PV) plants. The aim of this paper is to provide a fair and impartial operational performance evaluation of solar PV power plants taking into account of the impacts of environmental factors from real field data. Stochastic frontier analysis (SFA) is used to attribute the impacts of environmental factors (temperature, cloud amount, elevation, wind speed and precipitation) on inputs (like insolation and daylight hours) of solar PV power plants; while data envelopment analysis (DEA) is used to compute the environment-adjusted operational efficiency of these plants. SFA is utilized in the adjustment process for its merit of separating statistical noise from the error term, and DEA is used for its advantage of capturing the interaction among multiple inputs and outputs in a scalar value. The empirical analysis shows that the average operational efficiency of 70 grid-connected solar PV power plants in the United States slightly declines after accounting the impacts of environmental factors and statistical noise. Finally, the results partially support the initial concern from the statistical perspective and temperature is found to be the most significant influencing environmental factor, while precipitation and wind speed show no significant influence on operational efficiency. Therefore, the necessity of accounting for the impacts of environmental factors in the performance evaluation of solar PV power plants should not be omitted.

Suggested Citation

  • Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
  • Handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:1153-1162
    DOI: 10.1016/j.rser.2017.03.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117304549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.03.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Meral, Mehmet Emin & Dinçer, Furkan, 2011. "A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2176-2184, June.
    2. Avkiran, Necmi K. & Thoraneenitiyan, Nakhun, 2010. "Purging data before productivity analysis," Journal of Business Research, Elsevier, vol. 63(3), pages 294-302, March.
    3. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    4. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Mani, Monto & Pillai, Rohit, 2010. "Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3124-3131, December.
    7. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    8. Li, Nan & Liu, Cengceng & Zha, Donglan, 2016. "Performance evaluation of Chinese photovoltaic companies with the input-oriented dynamic SBM model," Renewable Energy, Elsevier, vol. 89(C), pages 489-497.
    9. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    10. Kaldellis, J.K. & Fragos, P. & Kapsali, M., 2011. "Systematic experimental study of the pollution deposition impact on the energy yield of photovoltaic installations," Renewable Energy, Elsevier, vol. 36(10), pages 2717-2724.
    11. Gökmen, Nuri & Hu, Weihao & Hou, Peng & Chen, Zhe & Sera, Dezso & Spataru, Sergiu, 2016. "Investigation of wind speed cooling effect on PV panels in windy locations," Renewable Energy, Elsevier, vol. 90(C), pages 283-290.
    12. José Manuel Pastor Monsálvez, 1999. "- Credit Risk And Efficiency In The European Banking Systems: A Three-Stage Analysis," Working Papers. Serie EC 1999-18, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    13. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    14. Sener, Can & Fthenakis, Vasilis, 2014. "Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 854-868.
    15. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    16. Avkiran, Necmi K. & Rowlands, Terry, 2008. "How to better identify the true managerial performance: State of the art using DEA," Omega, Elsevier, vol. 36(2), pages 317-324, April.
    17. Harold Fried & Shelton Schmidt & Suthathip Yaisawarng, 1999. "Incorporating the Operating Environment Into a Nonparametric Measure of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 12(3), pages 249-267, November.
    18. Adinoyi, Muhammed J. & Said, Syed A.M., 2013. "Effect of dust accumulation on the power outputs of solar photovoltaic modules," Renewable Energy, Elsevier, vol. 60(C), pages 633-636.
    19. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    20. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    21. McColl, Stuart J. & Rodgers, Peter & Eveloy, Valerie, 2015. "Thermal management of solar photovoltaics modules for enhanced power generation," Renewable Energy, Elsevier, vol. 82(C), pages 14-20.
    22. Avkiran, Necmi K., 2009. "Removing the impact of environment with units-invariant efficient frontier analysis: An illustrative case study with intertemporal panel data," Omega, Elsevier, vol. 37(3), pages 535-544, June.
    23. Mandal, P. & Sharma, S., 2016. "Progress in plasmonic solar cell efficiency improvement: A status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 537-552.
    24. Azadeh, A. & Ghaderi, S.F. & Maghsoudi, A., 2008. "Location optimization of solar plants by an integrated hierarchical DEA PCA approach," Energy Policy, Elsevier, vol. 36(10), pages 3993-4004, October.
    25. Kalogirou, Soteris A. & Agathokleous, Rafaela & Panayiotou, Gregoris, 2013. "On-site PV characterization and the effect of soiling on their performance," Energy, Elsevier, vol. 51(C), pages 439-446.
    26. Gaglia, Athina G. & Lykoudis, Spyros & Argiriou, Athanassios A. & Balaras, Constantinos A. & Dialynas, Evangelos, 2017. "Energy efficiency of PV panels under real outdoor conditions–An experimental assessment in Athens, Greece," Renewable Energy, Elsevier, vol. 101(C), pages 236-243.
    27. Al-Shamani, Ali Najah & Yazdi, Mohammad H. & Alghoul, M.A. & Abed, Azher M. & Ruslan, M.H. & Mat, Sohif & Sopian, K., 2014. "Nanofluids for improved efficiency in cooling solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 348-367.
    28. Fang, Chin-Yi & Hu, Jin-Li & Lou, Tze-Kai, 2013. "Environment-adjusted total-factor energy efficiency of Taiwan's service sectors," Energy Policy, Elsevier, vol. 63(C), pages 1160-1168.
    29. García-Domingo, B. & Aguilera, J. & de la Casa, J. & Fuentes, M., 2014. "Modelling the influence of atmospheric conditions on the outdoor real performance of a CPV (Concentrated Photovoltaic) module," Energy, Elsevier, vol. 70(C), pages 239-250.
    30. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    31. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    32. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    33. Abu Eldahab, Yasser E. & Saad, Naggar H. & Zekry, Abdalhalim, 2016. "Enhancing the design of battery charging controllers for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 646-655.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huaimo You & Hong Fang & Xu Wang & Siran Fang, 2018. "Environmental Efficiency of Photovoltaic Power Plants in China—A Comparative Study of Different Economic Zones and Plant Types," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    2. Kamran Ali & Laiq Khan & Qudrat Khan & Shafaat Ullah & Saghir Ahmad & Sidra Mumtaz & Fazal Wahab Karam & Naghmash, 2019. "Robust Integral Backstepping Based Nonlinear MPPT Control for a PV System," Energies, MDPI, vol. 12(16), pages 1-20, August.
    3. Jiyao Yin & Jueqi Wang & Chenyang Wang & Linxiu Wang & Zhangyu Chang, 2023. "CRITIC-TOPSIS Based Evaluation of Smart Community Governance: A Case Study in China," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    4. Wu, Yunna & Ke, Yiming & Zhang, Ting & Liu, Fangtong & Wang, Jing, 2018. "Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model," Energy, Elsevier, vol. 159(C), pages 599-610.
    5. Zhang, Tiantian & Nakagawa, Kei & Matsumoto, Ken'ichi, 2023. "Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis," Applied Energy, Elsevier, vol. 335(C).
    6. Yu, Bolin & Fang, Debin & Meng, Jingxuan, 2021. "Analysis of the generation efficiency of disaggregated renewable energy and its spatial heterogeneity influencing factors: A case study of China," Energy, Elsevier, vol. 234(C).
    7. Jing Yang & Changhui Yang & Xiaojia Wang & Manli Cheng & Jingjing Shang, 2020. "Efficiency Measurement and Factor Analysis of China’s Solar Photovoltaic Power Generation Considering Regional Differences Based on a FAHP–DEA Model," Energies, MDPI, vol. 13(8), pages 1-26, April.
    8. Chen, Xin & Zhou, Wenjia, 2023. "Performance evaluation of aquavoltaics in China: Retrospect and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    9. Carreno-Madinabeitia, Sheila & Ibarra-Berastegi, Gabriel & Sáenz, Jon & Ulazia, Alain, 2021. "Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010)," Energy, Elsevier, vol. 226(C).
    10. Sun, Chuanwang & Liu, Xiaohong & Li, Aijun, 2018. "Measuring unified efficiency of Chinese fossil fuel power plants: Intermediate approach combined with group heterogeneity and window analysis," Energy Policy, Elsevier, vol. 123(C), pages 8-18.
    11. Li, Jiaxin & Wang, Zihan & Cheng, Xin & Shuai, Jing & Shuai, Chuanmin & Liu, Jing, 2020. "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, Elsevier, vol. 201(C).
    12. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Operational Efficiency of Chinese Provincial Electricity Grid Enterprises: An Evaluation Employing a Three-Stage Data Envelopment Analysis (DEA) Model," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    13. Santos, Marllen & González, Mario, 2019. "Factors that influence the performance of wind farms," Renewable Energy, Elsevier, vol. 135(C), pages 643-651.
    14. Li, Jiaxin & Peng, Jiachao & Shuai, Chuanmin & Wang, Zihan & Huang, Fubin & Khayyam, Muhammad, 2022. "Does the solar PV program enhance the social empowerment of China's rural poor?," Energy, Elsevier, vol. 253(C).
    15. Chen, Chien-fei & Li, Jiaxin & Shuai, Jing & Nelson, Hannah & Walzem, Allen & Cheng, Jinhua, 2021. "Linking social-psychological factors with policy expectation: Using local voices to understand solar PV poverty alleviation in Wuhan, China," Energy Policy, Elsevier, vol. 151(C).
    16. Zhang, Chunxiao & Shen, Chao & Yang, Qianru & Wei, Shen & Lv, Guoquan & Sun, Cheng, 2020. "An investigation on the attenuation effect of air pollution on regional solar radiation," Renewable Energy, Elsevier, vol. 161(C), pages 570-578.
    17. Ronewa Collen Nemalili & Lordwell Jhamba & Joseph Kiprono Kirui & Caston Sigauke, 2023. "Nowcasting Hourly-Averaged Tilt Angles of Acceptance for Solar Collector Applications Using Machine Learning Models," Energies, MDPI, vol. 16(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hall, Maximilian J.B. & Kenjegalieva, Karligash A. & Simper, Richard, 2012. "Environmental factors affecting Hong Kong banking: A post-Asian financial crisis efficiency analysis," Global Finance Journal, Elsevier, vol. 23(3), pages 184-201.
    2. Avkiran, Necmi K. & Rowlands, Terry, 2008. "How to better identify the true managerial performance: State of the art using DEA," Omega, Elsevier, vol. 36(2), pages 317-324, April.
    3. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    4. Avkiran, Necmi K., 2009. "Removing the impact of environment with units-invariant efficient frontier analysis: An illustrative case study with intertemporal panel data," Omega, Elsevier, vol. 37(3), pages 535-544, June.
    5. Angela Stefania Bergantino & Enrico Musso, 2011. "A Multi-step Approach to Model the Relative Efficiency of European Ports: The Role of Regulation and Other Non-discretionary Factors," Chapters, in: Kevin Cullinane (ed.), International Handbook of Maritime Economics, chapter 18, Edward Elgar Publishing.
    6. Xiang Liu & Jia Liu, 2016. "Measurement of Low Carbon Economy Efficiency with a Three-Stage Data Envelopment Analysis: A Comparison of the Largest Twenty CO 2 Emitting Countries," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    7. Jinkai Li & Jingjing Ma & Wei Wei, 2020. "Analysis and Evaluation of the Regional Characteristics of Carbon Emission Efficiency for China," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    8. Huaimo You & Hong Fang & Xu Wang & Siran Fang, 2018. "Environmental Efficiency of Photovoltaic Power Plants in China—A Comparative Study of Different Economic Zones and Plant Types," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    9. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    10. Mingli Song & Guangshe Jia & Puwei Zhang, 2020. "An Evaluation of Air Transport Sector Operational Efficiency in China based on a Three-Stage DEA Analysis," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    11. Chiu, Yung-Ho & Chen, Yu-Chuan, 2009. "The analysis of Taiwanese bank efficiency: Incorporating both external environment risk and internal risk," Economic Modelling, Elsevier, vol. 26(2), pages 456-463, March.
    12. Avkiran, Necmi K., 2011. "Association of DEA super-efficiency estimates with financial ratios: Investigating the case for Chinese banks," Omega, Elsevier, vol. 39(3), pages 323-334, June.
    13. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, February.
    14. Wu, Tai-Hsi & Chen, Ming-Shiun & Yeh, Jin-Yii, 2010. "Measuring the performance of police forces in Taiwan using data envelopment analysis," Evaluation and Program Planning, Elsevier, vol. 33(3), pages 246-254, August.
    15. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Mahanty, Biswajit, 2018. "Examining the process of normalising the energy-efficiency targets for coal-based thermal power sector in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 342-352.
    16. Carla Henriques & Clara Viseu, 2022. "Are ERDFs Devoted to Boosting ICTs in SMEs Inefficient? A Three-Stage SBM Approach," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    17. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    18. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    19. Asmild, Mette & Pastor, Jesús T., 2010. "Slack free MEA and RDM with comprehensive efficiency measures," Omega, Elsevier, vol. 38(6), pages 475-483, December.
    20. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.

    More about this item

    Keywords

    Solar PV power plants; Environmental factors; Data envelopment analysis; Slacks; Stochastic frontier analysis;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:1153-1162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.