IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v94y2024ics0038012124001708.html
   My bibliography  Save this article

Efficiency and benchmarks for photovoltaic power generation amid uncertain conditions

Author

Listed:
  • Nakamoto, Yuya
  • Eguchi, Shogo
  • Takayabu, Hirotaka

Abstract

Photovoltaic (PV) power generation systems are highly subject to weather and site conditions, thus, the construction of PV power plant projects must consider these uncertainties. This study analyzes the monthly electricity generation of 249 utility-scale PV power plants in Japan to evaluate their electricity generation efficiency. Applying the generic data envelopment analysis, benchmark values were identified for power generation from PV power plants. Furthermore, we implemented a Monte Carlo experiment to evaluate the impact of variability in solar irradiance and temperature on power generation efficiency. For our analysis, we considered three inputs—solar irradiance, temperature, and installed capacity—and electricity generation as the output. The results showed that inter-regional gap in the efficiency score between the west and north regions is 0.03, and this can be covered by a 0.1 increase in the DC/AC ratio. Additionally, variability in weather conditions affect both the efficiency of a power plant and production possibility frontier, in turn causing the benchmark values for a generic decision-making unit to vary. Increasing the generation capacity of power plants and operating them more efficiently is essential to expanding the use of renewable energy resources.

Suggested Citation

  • Nakamoto, Yuya & Eguchi, Shogo & Takayabu, Hirotaka, 2024. "Efficiency and benchmarks for photovoltaic power generation amid uncertain conditions," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
  • Handle: RePEc:eee:soceps:v:94:y:2024:i:c:s0038012124001708
    DOI: 10.1016/j.seps.2024.101971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012124001708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2024.101971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    2. Huaimo You & Hong Fang & Xu Wang & Siran Fang, 2018. "Environmental Efficiency of Photovoltaic Power Plants in China—A Comparative Study of Different Economic Zones and Plant Types," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    3. Sözen, Adnan & Alp, İhsan & Kilinc, Cuma, 2012. "Efficiency assessment of the hydro-power plants in Turkey by using Data Envelopment Analysis," Renewable Energy, Elsevier, vol. 46(C), pages 192-202.
    4. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Martin Drechsler & Jonas Egerer & Martin Lange & Frank Masurowski & Jürgen Meyerhoff & Malte Oehlmann, 2017. "Efficient and equitable spatial allocation of renewable power plants at the country scale," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    7. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    8. R G Dyson & E A Shale, 2010. "Data envelopment analysis, operational research and uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 25-34, January.
    9. Shogo Eguchi, 2022. "CO 2 Reduction Potential from Efficiency Improvements in China’s Coal-Fired Thermal Power Generation: A Combined Approach of Metafrontier DEA and LMDI," Energies, MDPI, vol. 15(7), pages 1-19, March.
    10. Azadeh, A. & Sheikhalishahi, M. & Asadzadeh, S.M., 2011. "A flexible neural network-fuzzy data envelopment analysis approach for location optimization of solar plants with uncertainty and complexity," Renewable Energy, Elsevier, vol. 36(12), pages 3394-3401.
    11. Nakamoto, Yuya & Eguchi, Shogo, 2024. "How do seasonal and technical factors affect generation efficiency of photovoltaic power plants?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    13. García-Alonso, Carlos R. & Salvador-Carulla, Luis & Fernández-Rodríguez, Vicente, 2015. "Evaluation of system efficiency using the Monte Carlo DEA: The case of small health areasAuthor-Name: Torres-Jiménez, Mercedes," European Journal of Operational Research, Elsevier, vol. 242(2), pages 525-535.
    14. Ederer, Nikolaus, 2015. "Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1034-1046.
    15. Sakaguchi, Makishi & Fujii, Hidemichi, 2021. "The impact of variable renewable energy penetration on wholesale electricity prices in Japan," MPRA Paper 110554, University Library of Munich, Germany.
    16. Pereira, André Alves & Pereira, Miguel Alves, 2023. "Energy storage strategy analysis based on the Choquet multi-criteria preference aggregation model: The Portuguese case," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    17. Kim, Kyung-Taek & Lee, Deok Joo & Park, Sung-Joon & Zhang, Yanshuai & Sultanov, Azamat, 2015. "Measuring the efficiency of the investment for renewable energy in Korea using data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 694-702.
    18. Good, Jeremy & Johnson, Jeremiah X., 2016. "Impact of inverter loading ratio on solar photovoltaic system performance," Applied Energy, Elsevier, vol. 177(C), pages 475-486.
    19. Akbari, Negar & Jones, Dylan & Treloar, Richard, 2020. "A cross-European efficiency assessment of offshore wind farms: A DEA approach," Renewable Energy, Elsevier, vol. 151(C), pages 1186-1195.
    20. Majid Azadi & Reza Farzipoor Saen & Madjid Tavana, 2012. "Supplier selection using chance-constrained data envelopment analysis with non-discretionary factors and stochastic data," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 10(2), pages 167-196.
    21. Kavita Surana & Sarah M. Jordaan, 2019. "The climate mitigation opportunity behind global power transmission and distribution," Nature Climate Change, Nature, vol. 9(9), pages 660-665, September.
    22. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    23. Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).
    24. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    25. Iglesias, Guillermo & Castellanos, Pablo & Seijas, Amparo, 2010. "Measurement of productive efficiency with frontier methods: A case study for wind farms," Energy Economics, Elsevier, vol. 32(5), pages 1199-1208, September.
    26. Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
    27. Eguchi, Shogo & Takayabu, Hirotaka & Lin, Chen, 2021. "Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    28. Roberto S. Faranda & Hossein Hafezi & Sonia Leva & Marco Mussetta & Emanuele Ogliari, 2015. "The Optimum PV Plant for a Given Solar DC/AC Converter," Energies, MDPI, vol. 8(6), pages 1-18, May.
    29. Madlener, Reinhard & Antunes, Carlos Henggeler & Dias, Luis C., 2009. "Assessing the performance of biogas plants with multi-criteria and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1084-1094, September.
    30. Wang, Derek D. & Sueyoshi, Toshiyuki, 2017. "Assessment of large commercial rooftop photovoltaic system installations: Evidence from California," Applied Energy, Elsevier, vol. 188(C), pages 45-55.
    31. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nakamoto, Yuya & Eguchi, Shogo, 2024. "How do seasonal and technical factors affect generation efficiency of photovoltaic power plants?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2019. "Factors affecting the efficiency of wind power in the European Union countries," Energy Policy, Elsevier, vol. 132(C), pages 965-977.
    3. Mohd Chachuli, Fairuz Suzana & Ahmad Ludin, Norasikin & Md Jedi, Muhamad Alias & Hamid, Norul Hisham, 2021. "Transition of renewable energy policies in Malaysia: Benchmarking with data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    5. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    6. Andreas Eder & Bernhard Mahlberg & Bernhard Stürmer, 2021. "Measuring and explaining productivity growth of renewable energy producers: An empirical study of Austrian biogas plants," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(1), pages 37-63, February.
    7. Nakaishi, Tomoaki & Nagashima, Fumiya & Kagawa, Shigemi & Nansai, Keisuke & Chatani, Satoru, 2023. "Quantifying the health benefits of improving environmental efficiency: A case study from coal power plants in China," Energy Economics, Elsevier, vol. 121(C).
    8. Akbari, Negar & Jones, Dylan & Treloar, Richard, 2020. "A cross-European efficiency assessment of offshore wind farms: A DEA approach," Renewable Energy, Elsevier, vol. 151(C), pages 1186-1195.
    9. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    10. Cayir Ervural, Beyzanur & Zaim, Selim & Delen, Dursun, 2018. "A two-stage analytical approach to assess sustainable energy efficiency," Energy, Elsevier, vol. 164(C), pages 822-836.
    11. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    12. Wu, Yunna & Ke, Yiming & Zhang, Ting & Liu, Fangtong & Wang, Jing, 2018. "Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model," Energy, Elsevier, vol. 159(C), pages 599-610.
    13. Huaimo You & Hong Fang & Xu Wang & Siran Fang, 2018. "Environmental Efficiency of Photovoltaic Power Plants in China—A Comparative Study of Different Economic Zones and Plant Types," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    14. Li, Jiaxin & Wang, Zihan & Cheng, Xin & Shuai, Jing & Shuai, Chuanmin & Liu, Jing, 2020. "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, Elsevier, vol. 201(C).
    15. Shaher Z. Zahran & Jobair Bin Alam & Abdulrahem H. Al-Zahrani & Yiannis Smirlis & Stratos Papadimitriou & Vangelis Tsioumas, 2020. "Analysis of port efficiency using imprecise and incomplete data," Operational Research, Springer, vol. 20(1), pages 219-246, March.
    16. Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
    17. George E. Halkos & Roman Matousek & Nickolaos G. Tzeremes, 2016. "Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 47-77, January.
    18. Zeng, Shihong & Jiang, Chunxia & Ma, Chen & Su, Bin, 2018. "Investment efficiency of the new energy industry in China," Energy Economics, Elsevier, vol. 70(C), pages 536-544.
    19. Lee, Boon L. & Wilson, Clevo & Simshauser, Paul & Majiwa, Eucabeth, 2021. "Deregulation, efficiency and policy determination: An analysis of Australia's electricity distribution sector," Energy Economics, Elsevier, vol. 98(C).
    20. Barros, C.P. & Emrouznejad, Ali, 2016. "Assessing productive efficiency of banks using integrated Fuzzy-DEA and bootstrapping: A case of Mozambican banksAuthor-Name: Wanke, Peter," European Journal of Operational Research, Elsevier, vol. 249(1), pages 378-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:94:y:2024:i:c:s0038012124001708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.