IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v40y2020i4d10.1007_s10669-019-09747-x.html
   My bibliography  Save this article

Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach

Author

Listed:
  • Milad Kolagar

    (Shahrood University of Technology)

  • Seyed Mohammad Hassan Hosseini

    (Shahrood University of Technology)

  • Ramin Felegari

    (Shahrood University of Technology)

  • Parviz Fattahi

    (Alzahra University)

Abstract

Energy planning is one of the most important issues affecting the behaviors and policies of different countries at national and international levels. Concerns over the depletion of non-renewable energy sources and the pollution caused by their consumption have led most countries to focus on renewable energy sources. In this regard, governments are trying to develop policies for extensive use of their renewable energy sources. The precise formulation of such policies requires the development of quantitative approaches to assess the potential of the country in this field. Because selecting inappropriate approaches for evaluating the energy resources leads to wrong decisions in planning and policy-making for the whole energy sector and can cause irrecoverable damages to the country. Since energy issues are multi-dimensional in their nature, the development and selection of the appropriate decision-making approach among the available methods have become a critical issue in this field. In order to overcome this problem, this study proposed a hybrid approach by combining data envelopment analysis (DEA) and fuzzy best–worst method (FBWM) for the prioritization of renewable energy sources (RESs) in Iran. For this purpose, it considered five technical, economic, environmental, social, and political sustainability dimensions into account. The obtained results indicated that the solar, hydroelectric, wind, biomass, and geothermal energy sources are respectively the most efficient RESs in Iran. Also, a three-stage sensitivity analysis approach has proved the consistency of DEA-FBWM approach over the other decision-making methods. Consequently, the proposed approach can be used as a reliable method in the energy policy-making process.

Suggested Citation

  • Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
  • Handle: RePEc:spr:envsyd:v:40:y:2020:i:4:d:10.1007_s10669-019-09747-x
    DOI: 10.1007/s10669-019-09747-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-019-09747-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-019-09747-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Salman & Tahar, Razman Mat, 2014. "Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, Elsevier, vol. 63(C), pages 458-466.
    2. Ya Chen & Wade D. Cook & Juan Du & Hanhui Hu & Joe Zhu, 2017. "Bounded and discrete data and Likert scales in data envelopment analysis: application to regional energy efficiency in China," Annals of Operations Research, Springer, vol. 255(1), pages 347-366, August.
    3. Kveselis, Vaclovas & Dzenajavičienė, Eugenija Farida & Masaitis, Sigitas, 2017. "Analysis of energy development sustainability: The example of the lithuanian district heating sector," Energy Policy, Elsevier, vol. 100(C), pages 227-236.
    4. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    5. Blanco, G. & Amarilla, R. & Martinez, A. & Llamosas, C. & Oxilia, V., 2017. "Energy transitions and emerging economies: A multi-criteria analysis of policy options for hydropower surplus utilization in Paraguay," Energy Policy, Elsevier, vol. 108(C), pages 312-321.
    6. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 513-530.
    7. Heo, Eunnyeong & Kim, Jinsoo & Boo, Kyung-Jin, 2010. "Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2214-2220, October.
    8. Boubaker, K., 2012. "A review on renewable energy conceptual perspectives in North Africa using a polynomial optimization scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4298-4302.
    9. Huiru Zhao & Sen Guo, 2014. "Selecting Green Supplier of Thermal Power Equipment by Using a Hybrid MCDM Method for Sustainability," Sustainability, MDPI, vol. 6(1), pages 1-19, January.
    10. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Comprehensive benefit evaluation of eco-industrial parks by employing the best-worst method based on circular economy and sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1229-1253, June.
    11. Kim, Kyung-Taek & Lee, Deok Joo & Park, Sung-Joon & Zhang, Yanshuai & Sultanov, Azamat, 2015. "Measuring the efficiency of the investment for renewable energy in Korea using data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 694-702.
    12. Ozgur Demirta, 2013. "Evaluating the Best Renewable Energy Technology for Sustainable Energy Plannin," International Journal of Energy Economics and Policy, Econjournals, vol. 3(Special), pages 23-33.
    13. Kowalski, Katharina & Stagl, Sigrid & Madlener, Reinhard & Omann, Ines, 2009. "Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1063-1074, September.
    14. Goldrath, T. & Ayalon, O. & Shechter, M., 2015. "A combined sustainability index for electricity efficiency measures," Energy Policy, Elsevier, vol. 86(C), pages 574-584.
    15. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Sensitivity analysis of technological, economic and sustainability evaluation of power plants using the analytic hierarchy process," Energy Policy, Elsevier, vol. 37(3), pages 788-798, March.
    16. Lin, Boqiang & Omoju, Oluwasola E. & Okonkwo, Jennifer U., 2016. "Factors influencing renewable electricity consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 687-696.
    17. Heinrich, G. & Basson, L. & Cohen, B. & Howells, M. & Petrie, J., 2007. "Ranking and selection of power expansion alternatives for multiple objectives under uncertainty," Energy, Elsevier, vol. 32(12), pages 2350-2369.
    18. Amy H. I. Lee & He-Yau Kang & Chun-Yu Lin & Kuan-Chin Shen, 2015. "An Integrated Decision-Making Model for the Location of a PV Solar Plant," Sustainability, MDPI, vol. 7(10), pages 1-20, September.
    19. Zhang, Ling & Zhou, Peng & Newton, Sidney & Fang, Jian-xin & Zhou, De-qun & Zhang, Lu-ping, 2015. "Evaluating clean energy alternatives for Jiangsu, China: An improved multi-criteria decision making method," Energy, Elsevier, vol. 90(P1), pages 953-964.
    20. Grigoroudis, Evangelos & Petridis, Konstantinos & Arabatzis, Garyfallos, 2014. "RDEA: A recursive DEA based algorithm for the optimal design of biomass supply chain networks," Renewable Energy, Elsevier, vol. 71(C), pages 113-122.
    21. Lootsma, F. A., 1980. "Saaty's priority theory and the nomination of a senior professor in operations Research," European Journal of Operational Research, Elsevier, vol. 4(6), pages 380-388, June.
    22. Hua, Jian & Shiu, Hong-Gwo, 2018. "Sustainable development of renewable energy on Wangan Island, Taiwan," Utilities Policy, Elsevier, vol. 55(C), pages 200-208.
    23. Amigues, Jean-Pierre & Moreaux, Michel, 2019. "Competing land uses and fossil fuel, and optimal energy conversion rates during the transition toward a green economy under a pollution stock constraint," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 92-115.
    24. Goumas, M. & Lygerou, V., 2000. "An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects," European Journal of Operational Research, Elsevier, vol. 123(3), pages 606-613, June.
    25. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2008. "Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process," Energy Policy, Elsevier, vol. 36(3), pages 1074-1089, March.
    26. Bahrami, Mohsen & Abbaszadeh, Payam, 2013. "An overview of renewable energies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 198-208.
    27. Liu, Yuanxin & Ren, Lingzhi & Li, Yanbin & Zhao, Xin-gang, 2015. "The industrial performance of wind power industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 644-655.
    28. Iribarren, Diego & Martín-Gamboa, Mario & Dufour, Javier, 2013. "Environmental benchmarking of wind farms according to their operational performance," Energy, Elsevier, vol. 61(C), pages 589-597.
    29. Yi-Shian Lee & Lee-Ing Tong, 2012. "Predicting High or Low Transfer Efficiency of Photovoltaic Systems Using a Novel Hybrid Methodology Combining Rough Set Theory, Data Envelopment Analysis and Genetic Programming," Energies, MDPI, vol. 5(3), pages 1-16, February.
    30. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    31. Jean-Pierre Amigues & Michel Moreaux, 2019. "Energy Conversion Rate Improvements, Pollution Abatement Efforts and Energy Mix: The Transition toward the Green Economy under a Pollution Stock constraint," Working Papers 2019.14, FAERE - French Association of Environmental and Resource Economists.
    32. Blokhuis, Erik & Advokaat, Bart & Schaefer, Wim, 2012. "Assessing the performance of Dutch local energy companies," Energy Policy, Elsevier, vol. 45(C), pages 680-690.
    33. Mao-Sheng Liao & Gin-Shuh Liang & Chin-Yuan Chen, 2013. "Fuzzy grey relation method for multiple criteria decision-making problems," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(6), pages 3065-3077, October.
    34. Boubaker, K., 2012. "Renewable energy in upper North Africa: Present versus 2025-horizon perspectives optimization using a Data Envelopment Analysis (DEA) framework," Renewable Energy, Elsevier, vol. 43(C), pages 364-369.
    35. Azadeh, Ali & Rahimi-Golkhandan, Armin & Moghaddam, Mohsen, 2014. "Location optimization of wind power generation–transmission systems under uncertainty using hierarchical fuzzy DEA: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 877-885.
    36. Shen, Yung-Chi & Lin, Grace T.R. & Li, Kuang-Pin & Yuan, Benjamin J.C., 2010. "An assessment of exploiting renewable energy sources with concerns of policy and technology," Energy Policy, Elsevier, vol. 38(8), pages 4604-4616, August.
    37. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    38. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    39. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    40. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    41. Jayaraman, Raja & Colapinto, Cinzia & Torre, Davide La & Malik, Tufail, 2015. "Multi-criteria model for sustainable development using goal programming applied to the United Arab Emirates," Energy Policy, Elsevier, vol. 87(C), pages 447-454.
    42. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    43. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    44. Mulliner, Emma & Malys, Naglis & Maliene, Vida, 2016. "Comparative analysis of MCDM methods for the assessment of sustainable housing affordability," Omega, Elsevier, vol. 59(PB), pages 146-156.
    45. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    46. Rovere, Emilio Lebre La & Soares, Jeferson Borghetti & Oliveira, Luciano Basto & Lauria, Tatiana, 2010. "Sustainable expansion of electricity sector: Sustainability indicators as an instrument to support decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 422-429, January.
    47. Željko Stević & Irena Đalić & Dragan Pamučar & Zdravko Nunić & Slavko Vesković & Marko Vasiljević & Ilija Tanackov, 2019. "A new hybrid model for quality assessment of scientific conferences based on Rough BWM and SERVQUAL," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 1-30, April.
    48. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    49. Lee, Hsing-Chen & Chang, Ching-Ter, 2018. "Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 883-896.
    50. Wojuola, Rosemary N. & Alant, Busisiwe P., 2019. "Sustainable development and energy education in Nigeria," Renewable Energy, Elsevier, vol. 139(C), pages 1366-1374.
    51. Nattanin Ueasin & Anupong Wongchai & Sakkarin Nonthapot, 2015. "Performance Assessment and Optimization of Biomass Steam Turbine Power Plants by Data Envelopment Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 668-672.
    52. Longo, L. & Colantoni, A. & Castellucci, S. & Carlini, M. & Vecchione, L. & Savuto, E. & Pallozzi, V. & Di Carlo, A. & Bocci, E. & Moneti, M. & Cocchi, S. & Boubaker, K., 2015. "DEA (data envelopment analysis)-assisted supporting measures for ground coupled heat pumps implementing in Italy: A case study," Energy, Elsevier, vol. 90(P2), pages 1967-1972.
    53. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    54. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    55. Vera, Ivan & Langlois, Lucille, 2007. "Energy indicators for sustainable development," Energy, Elsevier, vol. 32(6), pages 875-882.
    56. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, October.
    57. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process," Energy Policy, Elsevier, vol. 37(3), pages 778-787, March.
    58. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    59. Dombi, Mihály & Kuti, István & Balogh, Péter, 2014. "Sustainability assessment of renewable power and heat generation technologies," Energy Policy, Elsevier, vol. 67(C), pages 264-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Maansi & Bolia, Nomesh B., 2024. "Factors affecting efficient discharge of judicial functions: Insights from Indian courts," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    2. Olawale Ogunrinde & Ekundayo Shittu, 2023. "Benchmarking performance of photovoltaic power plants in multiple periods," Environment Systems and Decisions, Springer, vol. 43(3), pages 489-503, September.
    3. Yevang Nhiavue & Han Soo Lee & Sylvester William Chisale & Jonathan Salar Cabrera, 2022. "Prioritization of Renewable Energy for Sustainable Electricity Generation and an Assessment of Floating Photovoltaic Potential in Lao PDR," Energies, MDPI, vol. 15(21), pages 1-20, November.
    4. Leng, Ya-Jun & Li, Xiao-Shuang & Zhang, Huan, 2024. "NSGA-T: A novel evaluation method for renewable energy plans," Energy, Elsevier, vol. 290(C).
    5. Sedef E. Kara & Mustapha D. Ibrahim & Sahand Daneshvar, 2021. "Dual Efficiency and Productivity Analysis of Renewable Energy Alternatives of OECD Countries," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    6. Obiora S. Agu & Lope G. Tabil & Edmund Mupondwa, 2023. "Actualization and Adoption of Renewable Energy Usage in Remote Communities in Canada by 2050: A Review," Energies, MDPI, vol. 16(8), pages 1-24, April.
    7. Nicolae Marinescu, 2020. "Changes in Renewable Energy Policy and Their Implications: The Case of Romanian Producers," Energies, MDPI, vol. 13(24), pages 1-16, December.
    8. Zachary A. Collier & James H. Lambert & Igor Linkov, 2020. "Analytics and decision-making to inform public policy in response to diverse threats," Environment Systems and Decisions, Springer, vol. 40(4), pages 463-464, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    4. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    5. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    6. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    7. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    8. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    10. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    11. Chiranjib Bhowmik & Sumit Bhowmik & Amitava Ray, 2020. "Optimal green energy source selection: An eclectic decision," Energy & Environment, , vol. 31(5), pages 842-859, August.
    12. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    13. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    14. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    15. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    17. Dongxiao Niu & Hao Zhen & Min Yu & Keke Wang & Lijie Sun & Xiaomin Xu, 2020. "Prioritization of Renewable Energy Alternatives for China by Using a Hybrid FMCDM Methodology with Uncertain Information," Sustainability, MDPI, vol. 12(11), pages 1-26, June.
    18. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    19. Zeng, Yuan & Guo, Waiying & Wang, Hongmei & Zhang, Fengbin, 2020. "A two-stage evaluation and optimization method for renewable energy development based on data envelopment analysis," Applied Energy, Elsevier, vol. 262(C).
    20. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:40:y:2020:i:4:d:10.1007_s10669-019-09747-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.