IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i12p2350-2369.html
   My bibliography  Save this article

Ranking and selection of power expansion alternatives for multiple objectives under uncertainty

Author

Listed:
  • Heinrich, G.
  • Basson, L.
  • Cohen, B.
  • Howells, M.
  • Petrie, J.

Abstract

Strategic planning in the electricity supply industry is a complex task due to the multiple and often conflicting objectives of the decision makers, as well as the inherent technical and valuation uncertainties involved. As such, a transparent decision support framework is needed, for guiding information management throughout the decision process, in a way which shapes decision outcomes, and enables confident choices to be made. This paper outlines a methodology for the ranking of power expansion alternatives given multiple objectives and uncertainty, and demonstrates this using the South African electricity supply industry. This methodology uses a value function MCDA approach that is augmented with scenario analysis to yield information relating to both the relative performance and credibility of power expansion alternatives. A portfolio of preferred alternatives is then identified based on performance and confidence criteria. Finally a more detailed analysis of the reduced solution set examines short-term technology investment details alongside attribute performance information, so as to gain insight into the decision problem and relate it back to real life actions.

Suggested Citation

  • Heinrich, G. & Basson, L. & Cohen, B. & Howells, M. & Petrie, J., 2007. "Ranking and selection of power expansion alternatives for multiple objectives under uncertainty," Energy, Elsevier, vol. 32(12), pages 2350-2369.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:12:p:2350-2369
    DOI: 10.1016/j.energy.2007.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207001053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Messner, S. & Golodnikov, A. & Gritsevskii, A., 1996. "A stochastic version of the dynamic linear programming model MESSAGE III," Energy, Elsevier, vol. 21(9), pages 775-784.
    2. Huang, J.P. & Poh, K.L. & Ang, B.W., 1995. "Decision analysis in energy and environmental modeling," Energy, Elsevier, vol. 20(9), pages 843-855.
    3. Fankhauser, Samuel & Smith, Joel B. & Tol, Richard S. J., 1999. "Weathering climate change: some simple rules to guide adaptation decisions," Ecological Economics, Elsevier, vol. 30(1), pages 67-78, July.
    4. P Linares & C Romero, 2000. "A multiple criteria decision making approach for electricity planning in Spain: economic versus environmental objectives," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(6), pages 736-743, June.
    5. Heinrich, G. & Howells, M. & Basson, L. & Petrie, J., 2007. "Electricity supply industry modelling for multiple objectives under demand growth uncertainty," Energy, Elsevier, vol. 32(11), pages 2210-2229.
    6. Danae Diakoulaki & Carlos Henggeler Antunes & António Gomes Martins, 2005. "MCDA and Energy Planning," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 859-890, Springer.
    7. Theodor J Stewart, 2005. "Dealing with Uncertainties in MCDA," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 445-466, Springer.
    8. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    9. Hobbs, Benjamin F & Horn, Graham TF, 1997. "Building public confidence in energy planning: a multimethod MCDM approach to demand-side planning at BC gas," Energy Policy, Elsevier, vol. 25(3), pages 357-375, February.
    10. Antunes, C.Henggeler & Martins, A.Gomes & Brito, Isabel Sofia, 2004. "A multiple objective mixed integer linear programming model for power generation expansion planning," Energy, Elsevier, vol. 29(4), pages 613-627.
    11. Kanudia, Amit & Loulou, Richard, 1998. "Robust responses to climate change via stochastic MARKAL: The case of Quebec," European Journal of Operational Research, Elsevier, vol. 106(1), pages 15-30, April.
    12. Galeotti, Marzio & Lanza, Alessandro & Pauli, Francesco, 2006. "Reassessing the environmental Kuznets curve for CO2 emissions: A robustness exercise," Ecological Economics, Elsevier, vol. 57(1), pages 152-163, April.
    13. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    14. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    15. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    16. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    17. Koroneos, C. & Michailidis, M. & Moussiopoulos, N., 2004. "Multi-objective optimization in energy systems: the case study of Lesvos Island, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(1), pages 91-100, February.
    18. Teghem, J. & Dufrane, D. & Thauvoye, M. & Kunsch, P., 1986. "Strange: An interactive method for multi-objective linear programming under uncertainty," European Journal of Operational Research, Elsevier, vol. 26(1), pages 65-82, July.
    19. Dyner, Isaac & Larsen, Erik R., 2001. "From planning to strategy in the electricity industry," Energy Policy, Elsevier, vol. 29(13), pages 1145-1154, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parkinson, Simon C. & Djilali, Ned, 2015. "Long-term energy planning with uncertain environmental performance metrics," Applied Energy, Elsevier, vol. 147(C), pages 402-412.
    2. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena, 2013. "Evaluating future scenarios for the power generation sector using a Multi-Criteria Decision Analysis (MCDA) tool: The Portuguese case," Energy, Elsevier, vol. 52(C), pages 126-136.
    3. Daniel Hach & Stefan Spinler, 2018. "Robustness of capacity markets: a stochastic dynamic capacity investment model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 517-540, March.
    4. Nayyar Hussain Mirjat & Mohammad Aslam Uqaili & Khanji Harijan & Mohd Wazir Mustafa & Md. Mizanur Rahman & M. Waris Ali Khan, 2018. "Multi-Criteria Analysis of Electricity Generation Scenarios for Sustainable Energy Planning in Pakistan," Energies, MDPI, vol. 11(4), pages 1-33, March.
    5. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    6. Beck, Jessica & Kempener, Ruud & Cohen, Brett & Petrie, Jim, 2008. "A complex systems approach to planning, optimization and decision making for energy networks," Energy Policy, Elsevier, vol. 36(8), pages 2803-2813, August.
    7. Baker, Erin & Keisler, Jeffrey M., 2011. "Cellulosic biofuels: Expert views on prospects for advancement," Energy, Elsevier, vol. 36(1), pages 595-605.
    8. Thushara, De Silva M. & Hornberger, George M. & Baroud, Hiba, 2019. "Decision analysis to support the choice of a future power generation pathway for Sri Lanka," Applied Energy, Elsevier, vol. 240(C), pages 680-697.
    9. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2016. "Optimization modeling to support renewables integration in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 316-325.
    10. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    11. Atabaki, Mohammad Saeid & Aryanpur, Vahid, 2018. "Multi-objective optimization for sustainable development of the power sector: An economic, environmental, and social analysis of Iran," Energy, Elsevier, vol. 161(C), pages 493-507.
    12. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    13. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    14. Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam & Harijan, Khanji & Walasai, Gordhan Das & Mondal, Md Alam Hossain & Sahin, Hasret, 2018. "Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): A LEAP model application for policy analysis," Energy, Elsevier, vol. 165(PB), pages 512-526.
    15. Buchmayr, A. & Taelman, S.E. & Thomassen, G. & Verhofstadt, E. & Van Ootegem, L. & Dewulf, J., 2023. "A distance-to-sustainability-target approach for indicator aggregation and its application for the comparison of wind energy alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    16. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    17. Bazilian, Morgan & Hobbs, Benjamin F. & Blyth, Will & MacGill, Iain & Howells, Mark, 2011. "Interactions between energy security and climate change: A focus on developing countries," Energy Policy, Elsevier, vol. 39(6), pages 3750-3756, June.
    18. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2012. "Economic and environmental analysis of power generation expansion in Japan considering Fukushima nuclear accident using a multi-objective optimization model," Energy, Elsevier, vol. 44(1), pages 986-995.
    19. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    20. Musango, Josephine K. & Brent, Alan C., 2011. "Assessing the sustainability of energy technological systems in Southern Africa: A review and way forward," Technology in Society, Elsevier, vol. 33(1), pages 145-155.
    21. Zangeneh, Ali & Jadid, Shahram & Rahimi-Kian, Ashkan, 2009. "Promotion strategy of clean technologies in distributed generation expansion planning," Renewable Energy, Elsevier, vol. 34(12), pages 2765-2773.
    22. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    23. Zangiabadi, Mansoureh & Feuillet, Rene & Lesani, Hamid & Hadj-Said, Nouredine & Kvaløy, Jan T., 2011. "Assessing the performance and benefits of customer distributed generation developers under uncertainties," Energy, Elsevier, vol. 36(3), pages 1703-1712.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heinrich, G. & Howells, M. & Basson, L. & Petrie, J., 2007. "Electricity supply industry modelling for multiple objectives under demand growth uncertainty," Energy, Elsevier, vol. 32(11), pages 2210-2229.
    2. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    3. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    4. Løken, Espen, 2007. "Use of multicriteria decision analysis methods for energy planning problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1584-1595, September.
    5. Strantzali, Eleni & Aravossis, Konstantinos & Livanos, Georgios A., 2017. "Evaluation of future sustainable electricity generation alternatives: The case of a Greek island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 775-787.
    6. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    7. Madlener, Reinhard & Stagl, Sigrid, 2005. "Sustainability-guided promotion of renewable electricity generation," Ecological Economics, Elsevier, vol. 53(2), pages 147-167, April.
    8. Xie, Y.L. & Li, Y.P. & Huang, G.H. & Li, Y.F., 2010. "An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty," Energy, Elsevier, vol. 35(12), pages 4627-4644.
    9. J. Cabello & M. Luque & F. Miguel & A. Ruiz & F. Ruiz, 2014. "A multiobjective interactive approach to determine the optimal electricity mix in Andalucía (Spain)," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 109-127, April.
    10. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    11. Ren, Hongbo & Gao, Weijun & Zhou, Weisheng & Nakagami, Ken'ichi, 2009. "Multi-criteria evaluation for the optimal adoption of distributed residential energy systems in Japan," Energy Policy, Elsevier, vol. 37(12), pages 5484-5493, December.
    12. Beynon, Malcolm J. & Wells, Peter, 2008. "The lean improvement of the chemical emissions of motor vehicles based on preference ranking: A PROMETHEE uncertainty analysis," Omega, Elsevier, vol. 36(3), pages 384-394, June.
    13. Albadvi, Amir & Chaharsooghi, S. Kamal & Esfahanipour, Akbar, 2007. "Decision making in stock trading: An application of PROMETHEE," European Journal of Operational Research, Elsevier, vol. 177(2), pages 673-683, March.
    14. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    15. Ormerod, Richard J. & Ulrich, Werner, 2013. "Operational research and ethics: A literature review," European Journal of Operational Research, Elsevier, vol. 228(2), pages 291-307.
    16. Mavrotas, George & Diakoulaki, Danae & Florios, Kostas & Georgiou, Paraskevas, 2008. "A mathematical programming framework for energy planning in services' sector buildings under uncertainty in load demand: The case of a hospital in Athens," Energy Policy, Elsevier, vol. 36(7), pages 2415-2429, July.
    17. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    18. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    19. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    20. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:12:p:2350-2369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.