IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i4p613-627.html
   My bibliography  Save this article

A multiple objective mixed integer linear programming model for power generation expansion planning

Author

Listed:
  • Antunes, C.Henggeler
  • Martins, A.Gomes
  • Brito, Isabel Sofia

Abstract

Power generation expansion planning inherently involves multiple, conflicting and incommensurate objectives. Therefore, mathematical models become more realistic if distinct evaluation aspects, such as cost and environmental concerns, are explicitly considered as objective functions rather than being encompassed by a single economic indicator. With the aid of multiple objective models, decision makers may grasp the conflicting nature and the trade-offs among the different objectives in order to select satisfactory compromise solutions. This paper presents a multiple objective mixed integer linear programming model for power generation expansion planning that allows the consideration of modular expansion capacity values of supply-side options. This characteristic of the model avoids the well-known problem associated with continuous capacity values that usually have to be discretized in a post-processing phase without feedback on the nature and importance of the changes in the attributes of the obtained solutions. Demand-side management (DSM) is also considered an option in the planning process, assuming there is a sufficiently large portion of the market under franchise conditions. As DSM full costs are accounted in the model, including lost revenues, it is possible to perform an evaluation of the rate impact in order to further inform the decision process.

Suggested Citation

  • Antunes, C.Henggeler & Martins, A.Gomes & Brito, Isabel Sofia, 2004. "A multiple objective mixed integer linear programming model for power generation expansion planning," Energy, Elsevier, vol. 29(4), pages 613-627.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:4:p:613-627
    DOI: 10.1016/j.energy.2003.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203002652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2003.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narula, Subhash C. & Vassilev, Vassil, 1994. "An interactive algorithm for solving multiple objective integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 79(3), pages 443-450, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ustun, Ozden & DemI[dot above]rtas, Ezgi Aktar, 2008. "An integrated multi-objective decision-making process for multi-period lot-sizing with supplier selection," Omega, Elsevier, vol. 36(4), pages 509-521, August.
    2. Demirtas, Ezgi Aktar & Üstün, Özden, 2008. "An integrated multiobjective decision making process for supplier selection and order allocation," Omega, Elsevier, vol. 36(1), pages 76-90, February.
    3. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    4. Alves, Maria Joao & Climaco, Joao, 2000. "An interactive reference point approach for multiobjective mixed-integer programming using branch-and-bound," European Journal of Operational Research, Elsevier, vol. 124(3), pages 478-494, August.
    5. Ted Ralphs & Matthew Saltzman & Margaret Wiecek, 2006. "An improved algorithm for solving biobjective integer programs," Annals of Operations Research, Springer, vol. 147(1), pages 43-70, October.
    6. Alves, Maria Joao & Climaco, Joao, 1999. "Using cutting planes in an interactive reference point approach for multiobjective integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 117(3), pages 565-577, September.
    7. Kaliszewski, Ignacy, 2004. "Out of the mist--towards decision-maker-friendly multiple criteria decision making support," European Journal of Operational Research, Elsevier, vol. 158(2), pages 293-307, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:4:p:613-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.