IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v240y2019icp680-697.html
   My bibliography  Save this article

Decision analysis to support the choice of a future power generation pathway for Sri Lanka

Author

Listed:
  • Thushara, De Silva M.
  • Hornberger, George M.
  • Baroud, Hiba

Abstract

Power generation planning seeks to achieve a reliable power system, economic efficiency, environmental sustainability, and social acceptability. Different alternatives of energy mixes that reflect emphasis on different strategic elements of energy policy are envisioned. For each alternative, a generation expansion pathway, comprised of different technologies introduced at different times along the planning period, is identified for each alternative considered. These pathways must be assessed in terms of multiple, sometimes conflicting, and often non-commensurate objectives. A power generation pathway can be evaluated using multiple criteria, each measured using a number of attributes. Sri Lanka, an island with no grid connection to neighboring countries and no fossil fuel reserves, currently needs to evaluate future power generation pathways. The objective of this study is to use a power capacity planning optimization model to determine details of a pathway for scheduling power plant additions for a set of alternatives and a demonstrate the use of multicriteria decision analysis method for identifying the “best” pathway for Sri Lanka. Different power generation pathways are developed and evaluated across multiple criteria and the preferences of multiple stakeholders. There is no clear winner among the pathways. A mix of renewable resources and fossil fuel constitutes an alternative that achieves energy security while satisfying multiple criteria associated with future power generation to a reasonable extent.

Suggested Citation

  • Thushara, De Silva M. & Hornberger, George M. & Baroud, Hiba, 2019. "Decision analysis to support the choice of a future power generation pathway for Sri Lanka," Applied Energy, Elsevier, vol. 240(C), pages 680-697.
  • Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:680-697
    DOI: 10.1016/j.apenergy.2019.02.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930371X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    2. Rogers, Martin & Bruen, Michael, 1998. "Choosing realistic values of indifference, preference and veto thresholds for use with environmental criteria within ELECTRE," European Journal of Operational Research, Elsevier, vol. 107(3), pages 542-551, June.
    3. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    4. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    5. Koelbl, Barbara S. & van den Broek, Machteld A. & Wilting, Harry C. & Sanders, Mark W.J.L. & Bulavskaya, Tatyana & Wood, Richard & Faaij, André P.C. & van Vuuren, Detlef P., 2016. "Socio-economic impacts of low-carbon power generation portfolios: Strategies with and without CCS for the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 257-277.
    6. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    7. Malkawi, Salaheddin & Al-Nimr, Moh'd & Azizi, Danah, 2017. "A multi-criteria optimization analysis for Jordan's energy mix," Energy, Elsevier, vol. 127(C), pages 680-696.
    8. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    9. Jaramillo, Paulina & Muller, Nicholas Z., 2016. "Air pollution emissions and damages from energy production in the U.S.: 2002–2011," Energy Policy, Elsevier, vol. 90(C), pages 202-211.
    10. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    11. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.
    12. Shiraishi, Kenji & Shirley, Rebekah G. & Kammen, Daniel M., 2019. "Geospatial multi-criteria analysis for identifying high priority clean energy investment opportunities: A case study on land-use conflict in Bangladesh," Applied Energy, Elsevier, vol. 235(C), pages 1457-1467.
    13. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    14. Flores, Julio R. & Montagna, Jorge M. & Vecchietti, Aldo, 2014. "An optimization approach for long term investments planning in energy," Applied Energy, Elsevier, vol. 122(C), pages 162-178.
    15. Kazagic, Anes & Merzic, Ajla & Redzic, Elma & Music, Mustafa, 2014. "Power utility generation portfolio optimization as function of specific RES and decarbonisation targets – EPBiH case study," Applied Energy, Elsevier, vol. 135(C), pages 694-703.
    16. Heinrich, G. & Basson, L. & Cohen, B. & Howells, M. & Petrie, J., 2007. "Ranking and selection of power expansion alternatives for multiple objectives under uncertainty," Energy, Elsevier, vol. 32(12), pages 2350-2369.
    17. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    18. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    19. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
    20. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena, 2013. "Evaluating future scenarios for the power generation sector using a Multi-Criteria Decision Analysis (MCDA) tool: The Portuguese case," Energy, Elsevier, vol. 52(C), pages 126-136.
    21. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2008. "Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process," Energy Policy, Elsevier, vol. 36(3), pages 1074-1089, March.
    22. Rahman, Md. Mizanur & Paatero, Jukka V. & Lahdelma, Risto & A. Wahid, Mazlan, 2016. "Multicriteria-based decision aiding technique for assessing energy policy elements-demonstration to a case in Bangladesh," Applied Energy, Elsevier, vol. 164(C), pages 237-244.
    23. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2019. "Coordination of policy goals between renewable portfolio standards and carbon caps: A quantitative assessment in China," Applied Energy, Elsevier, vol. 237(C), pages 25-35.
    24. Vithayasrichareon, Peerapat & Riesz, Jenny & MacGill, Iain, 2017. "Operational flexibility of future generation portfolios with high renewables," Applied Energy, Elsevier, vol. 206(C), pages 32-41.
    25. Murrant, Daniel & Radcliffe, Jonathan, 2018. "Assessing energy storage technology options using a multi-criteria decision analysis-based framework," Applied Energy, Elsevier, vol. 231(C), pages 788-802.
    26. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2016. "An optimization framework for the integrated planning of generation and transmission expansion in interconnected power systems," Applied Energy, Elsevier, vol. 170(C), pages 1-21.
    27. Talinli, Ilhan & Topuz, Emel & Uygar Akbay, Mehmet, 2010. "Comparative analysis for energy production processes (EPPs): Sustainable energy futures for Turkey," Energy Policy, Elsevier, vol. 38(8), pages 4479-4488, August.
    28. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    29. World Bank & Ecofys, "undated". "State and Trends of Carbon Pricing 2018," World Bank Publications - Reports 29687, The World Bank Group.
    30. Vučijak, B. & Kupusović, T. & Midžić-Kurtagić, S. & Ćerić, A., 2013. "Applicability of multicriteria decision aid to sustainable hydropower," Applied Energy, Elsevier, vol. 101(C), pages 261-267.
    31. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    32. Martinez, Lauro J. & Lambert, James H. & Karvetski, Christopher W., 2011. "Scenario-informed multiple criteria analysis for prioritizing investments in electricity capacity expansion," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 883-891.
    33. Stelios Grafakos & Alexandros Flamos & Elena Marie Enseñado, 2015. "Preferences Matter: A Constructive Approach to Incorporating Local Stakeholders’ Preferences in the Sustainability Evaluation of Energy Technologies," Sustainability, MDPI, vol. 7(8), pages 1-39, August.
    34. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    35. Chen, Zheng-Ao & Li, Qi & Liu, Lan-Cui & Zhang, Xian & Kuang, Liping & Jia, Li & Liu, Guizhen, 2015. "A large national survey of public perceptions of CCS technology in China," Applied Energy, Elsevier, vol. 158(C), pages 366-377.
    36. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    37. Georgopoulou, E. & Lalas, D. & Papagiannakis, L., 1997. "A multicriteria decision aid approach for energy planning problems: The case of renewable energy option," European Journal of Operational Research, Elsevier, vol. 103(1), pages 38-54, November.
    38. Pina, André & Silva, Carlos A. & Ferrão, Paulo, 2013. "High-resolution modeling framework for planning electricity systems with high penetration of renewables," Applied Energy, Elsevier, vol. 112(C), pages 215-223.
    39. Peter Meier & Mohan Munasinghe, 2005. "Sustainable Energy in Developing Countries," Books, Edward Elgar Publishing, number 3350.
    40. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    41. Aliyu, Abubakar Sadiq & Ramli, Ahmad Termizi & Saleh, Muneer Aziz, 2013. "Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications," Energy, Elsevier, vol. 61(C), pages 354-367.
    42. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    43. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    44. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    45. Brand, Bernhard & Missaoui, Rafik, 2014. "Multi-criteria analysis of electricity generation mix scenarios in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 251-261.
    46. Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
    47. Afful-Dadzie, Anthony & Afful-Dadzie, Eric & Awudu, Iddrisu & Banuro, Joseph Kwaku, 2017. "Power generation capacity planning under budget constraint in developing countries," Applied Energy, Elsevier, vol. 188(C), pages 71-82.
    48. Parpas, Panos & Webster, Mort, 2014. "A stochastic multiscale model for electricity generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 232(2), pages 359-374.
    49. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    50. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannah Mareike Marczinkowski & Poul Alberg Østergaard & Søren Roth Djørup, 2019. "Transitioning Island Energy Systems—Local Conditions, Development Phases, and Renewable Energy Integration," Energies, MDPI, vol. 12(18), pages 1-20, September.
    2. Bandar Jubran Alqahtani & Dalia Patino-Echeverri, 2023. "Identifying Economic and Clean Strategies to Provide Electricity in Remote Rural Areas: Main-Grid Extension vs. Distributed Electricity Generation," Energies, MDPI, vol. 16(2), pages 1-18, January.
    3. Caldera, Upeksha & Gulagi, Ashish & Jayasinghe, Nilan & Breyer, Christian, 2023. "Looking island wide to overcome Sri Lankaʼs energy crisis while gaining independence from fossil fuel imports," Renewable Energy, Elsevier, vol. 218(C).
    4. Ernesto Alberto Alvarez & Mika Korkeakoski & Ariel Santos Fuentefría & Miriam Lourdes Filgueiras Sainz de Rozas & Ramsés Arcila Padura & Jyrki Luukkanen, 2021. "Long-Range Integrated Development Analysis: The Cuban Isla de la Juventud Study Case," Energies, MDPI, vol. 14(10), pages 1-23, May.
    5. Sujan Ghimire & Ravinesh C Deo & Nawin Raj & Jianchun Mi, 2019. "Deep Learning Neural Networks Trained with MODIS Satellite-Derived Predictors for Long-Term Global Solar Radiation Prediction," Energies, MDPI, vol. 12(12), pages 1-39, June.
    6. Mika Korkeakoski, 2021. "Towards 100% Renewables by 2030: Transition Alternatives for a Sustainable Electricity Sector in Isla de la Juventud, Cuba," Energies, MDPI, vol. 14(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    3. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    4. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    5. Vögele, Stefan & Teja Josyabhatla, Vishnu & Ball, Christopher & Rhoden, Imke & Grajewski, Matthias & Rübbelke, Dirk & Kuckshinrichs, Wilhelm, 2023. "Robust assessment of energy scenarios from stakeholders' perspectives," Energy, Elsevier, vol. 282(C).
    6. Abreu Kang, Takanni Hannaka & da Costa Soares Júnior, Antônio Marques & de Almeida, Adiel Teixeira, 2018. "Evaluating electric power generation technologies: A multicriteria analysis based on the FITradeoff method," Energy, Elsevier, vol. 165(PB), pages 10-20.
    7. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.
    8. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    9. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    10. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    11. Temitope Adeyemi-Kayode & Sanjay Misra & Hope Orovwode & Anthony Adoghe, 2022. "Modeling the Next Decade of Energy Sustainability: A Case of a Developing Country," Energies, MDPI, vol. 15(14), pages 1-19, July.
    12. Aryanpur, Vahid & Atabaki, Mohammad Saeid & Marzband, Mousa & Siano, Pierluigi & Ghayoumi, Kiarash, 2019. "An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 58-74.
    13. Radhanon Diewvilai & Kulyos Audomvongseree, 2021. "Generation Expansion Planning with Energy Storage Systems Considering Renewable Energy Generation Profiles and Full-Year Hourly Power Balance Constraints," Energies, MDPI, vol. 14(18), pages 1-25, September.
    14. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    15. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    16. Malkawi, Salaheddin & Al-Nimr, Moh'd & Azizi, Danah, 2017. "A multi-criteria optimization analysis for Jordan's energy mix," Energy, Elsevier, vol. 127(C), pages 680-696.
    17. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    19. Shmelev, Stanislav E. & van den Bergh, Jeroen C.J.M., 2016. "Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 679-691.
    20. Bissiri, M. & Moura, P. & Figueiredo, N.C. & Silva, P.P., 2020. "Towards a renewables-based future for West African States: A review of power systems planning approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:240:y:2019:i:c:p:680-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.