IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v198y2025ics0301421525000126.html
   My bibliography  Save this article

An equilibrium model of the Chinese carbon trading market under the uncertainty of market demand: Application to thermal power industry

Author

Listed:
  • Ma, Gang
  • Zhang, Biao
  • Li, Xu
  • Zheng, Jianping

Abstract

This study examines how to choose between the reduction methods of reduce output (RO) and change in process (CIP) for enterprises under carbon trading regulations, and whether the carbon trading market can reach equilibrium under different emission reduction strategies. A carbon trading model based on the RO and CIP reduction methods was constructed, and two large thermal power groups were taken as examples for empirical analysis. The main conclusions are as follows: (1) When the demand faced by an enterprise is uniformly distributed and the form of the carbon abatement cost function is a logarithmic function, the enterprise has three emission reduction strategies to choose from: output reduction, mixed emission reduction, and industry exit. (2) The carbon trading market can reach equilibrium when the participants take different emission reduction strategies. (3) The allocation of initial carbon emission rights significantly affects the profits of enterprises. As the auction ratio of carbon emissions rights increases, the enthusiasm of enterprises to participate in the carbon trading market decreases. (4) The fluctuation of the carbon price is inversely related to the fluctuation in the macro coal price. Increasing the electricity price can improve the profits of enterprises without affecting the carbon price.

Suggested Citation

  • Ma, Gang & Zhang, Biao & Li, Xu & Zheng, Jianping, 2025. "An equilibrium model of the Chinese carbon trading market under the uncertainty of market demand: Application to thermal power industry," Energy Policy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:enepol:v:198:y:2025:i:c:s0301421525000126
    DOI: 10.1016/j.enpol.2025.114505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421525000126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2025.114505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frech, H E, III, 1979. "The Extended Coase Theorem and Long Run Equilibrium: The Nonequivalence of Liability Rules and Property Rights," Economic Inquiry, Western Economic Association International, vol. 17(2), pages 254-268, April.
    2. Pang, Jun & Timilsina, Govinda, 2021. "How would an emissions trading scheme affect provincial economies in China: Insights from a computable general equilibrium model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Lin, Boqiang & Jia, Zhijie, 2020. "Does the different sectoral coverage matter? An analysis of China's carbon trading market," Energy Policy, Elsevier, vol. 137(C).
    4. Zhao, Jinhua, 2003. "Irreversible abatement investment under cost uncertainties: tradable emission permits and emissions charges," Journal of Public Economics, Elsevier, vol. 87(12), pages 2765-2789, December.
    5. Choi, Yongrok & Liu, Yu & Lee, Hyoungseok, 2017. "The economy impacts of Korean ETS with an emphasis on sectoral coverage based on a CGE approach," Energy Policy, Elsevier, vol. 109(C), pages 835-844.
    6. Lin, Boqiang & Jia, Zhijie, 2019. "What will China's carbon emission trading market affect with only electricity sector involvement? A CGE based study," Energy Economics, Elsevier, vol. 78(C), pages 301-311.
    7. Xiting Gong & Sean X. Zhou, 2013. "Optimal Production Planning with Emissions Trading," Operations Research, INFORMS, vol. 61(4), pages 908-924, August.
    8. Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
    9. Krysiak, Frank C., 2008. "Prices vs. quantities: The effects on technology choice," Journal of Public Economics, Elsevier, vol. 92(5-6), pages 1275-1287, June.
    10. Fischer, Carolyn & Parry, Ian W. H. & Pizer, William A., 2003. "Instrument choice for environmental protection when technological innovation is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 523-545, May.
    11. Shaojian Qu & Guoqing Jiang & Ying Ji & Guangming Zhang & Nabe Mohamed, 2021. "Newsvendor’s optimal decisions under stochastic demand and cap-and-trade regulation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17764-17787, December.
    12. Criqui, Patrick & Mima, Silvana & Viguier, Laurent, 1999. "Marginal abatement costs of CO2 emission reductions, geographical flexibility and concrete ceilings: an assessment using the POLES model," Energy Policy, Elsevier, vol. 27(10), pages 585-601, October.
    13. Wenhao Qi & Changxing Song & Meng Sun & Liguo Wang & Youcheng Han, 2022. "Sustainable Growth Drivers: Unveiling the Role Played by Carbon Productivity," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    14. Mu, Yaqian & Evans, Samuel & Wang, Can & Cai, Wenjia, 2018. "How will sectoral coverage affect the efficiency of an emissions trading system? A CGE-based case study of China," Applied Energy, Elsevier, vol. 227(C), pages 403-414.
    15. Li, Xu & Wu, Xiaole & Zhang, Fuqiang, 2015. "A method for analyzing pollution control policies: Application to SO2 emissions in China," Energy Economics, Elsevier, vol. 49(C), pages 451-459.
    16. Margaret Insley, 2003. "On the option to invest in pollution control under a regime of tradable emissions allowances," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 860-883, November.
    17. Juan-Pablo Montero, 2002. "Market Structure and Environmental Innovation," Journal of Applied Economics, Taylor & Francis Journals, vol. 5(2), pages 293-325, November.
    18. William D. Nordhaus, 1991. "The Cost of Slowing Climate Change: a Survey," The Energy Journal, , vol. 12(1), pages 37-66, January.
    19. Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
    20. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wu, Yinyin, 2016. "A carbon emissions reduction index: Integrating the volume and allocation of regional emissions," Applied Energy, Elsevier, vol. 184(C), pages 1154-1164.
    21. Nguyen, Dinh Hoa & Chapman, Andrew & Farabi-Asl, Hadi, 2019. "Nation-wide emission trading model for economically feasible carbon reduction in Japan," Applied Energy, Elsevier, vol. 255(C).
    22. Baochen Yang & Chuanze Liu & Yunpeng Su & Xin Jing, 2017. "The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    23. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    24. Baris Karapinar & Hasan Dudu & Ozge Geyik & Aykut Mert Yakut, 2020. "How to reach an elusive INDC target: macro-economic implications of carbon taxation and emissions trading in Turkey," Climate Policy, Taylor & Francis Journals, vol. 19(9), pages 1157-1172, July.
    25. Zhao, Xin-gang & Jiang, Gui-wu & Nie, Dan & Chen, Hao, 2016. "How to improve the market efficiency of carbon trading: A perspective of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1229-1245.
    26. William D. Nordhaus, 1991. "The Cost of Slowing Climate Change: a Survey," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 37-66.
    27. Chen, Wenying & Wu, Zongxin & He, Jiankun & Gao, Pengfei & Xu, Shaofeng, 2007. "Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model," Energy, Elsevier, vol. 32(1), pages 59-72.
    28. Montero, Juan-Pablo, 2002. "Market Structure and Environmental Innovation," Journal of Applied Economics, Universidad del CEMA, vol. 5(2), pages 1-33, November.
    29. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    30. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    31. Vijay, Samudra & DeCarolis, Joseph F. & Srivastava, Ravi K., 2010. "A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers," Energy Policy, Elsevier, vol. 38(5), pages 2255-2261, May.
    32. Juergen Dietz & Peter Michaelis, 2004. "Incentives for Innovation in Pollution Control: Emission Standards Revisited," Discussion Paper Series 263, Universitaet Augsburg, Institute for Economics.
    33. Zhang, Da & Rausch, Sebastian & Karplus, Valerie J. & Zhang, Xiliang, 2013. "Quantifying regional economic impacts of CO2 intensity targets in China," Energy Economics, Elsevier, vol. 40(C), pages 687-701.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yenipazarli, Arda, 2019. "Incentives for environmental research and development: Consumer preferences, competitive pressure and emissions taxation," European Journal of Operational Research, Elsevier, vol. 276(2), pages 757-769.
    2. Krysiak, Frank C., 2011. "Environmental regulation, technological diversity, and the dynamics of technological change," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 528-544, April.
    3. Halvor Briseid Storrøsten, 2014. "Prices vs. Quantities with Endogenous Cost Structure," CESifo Working Paper Series 4625, CESifo.
    4. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    5. Ana Espínola-Arredondo & Felix Munoz-Garcia & Boying Liu, 2019. "Strategic Emission Fees: Using Green Technology to Deter Entry," Journal of Industry, Competition and Trade, Springer, vol. 19(2), pages 313-349, June.
    6. Revesz, Richard & Stavins, Robert, 2004. "Environmental Law and Policy," Working Paper Series rwp04-023, Harvard University, John F. Kennedy School of Government.
    7. Storrøsten, Halvor Briseid, 2015. "Prices vs. quantities with endogenous cost structure and optimal policy," Resource and Energy Economics, Elsevier, vol. 41(C), pages 143-163.
    8. Pang, Jun & Timilsina, Govinda, 2021. "How would an emissions trading scheme affect provincial economies in China: Insights from a computable general equilibrium model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Wu, Jie & Fan, Ying & Timilsina, Govinda & Xia, Yan, 2022. "Exploiting Complementarity of Carbon Pricing Instruments for Low-Carbon Development in the People’s Republic of China," ADBI Working Papers 1329, Asian Development Bank Institute.
    10. Lehmann, Paul, 2010. "Combining emissions trading and emissions taxes in a multi-objective world," UFZ Discussion Papers 4/2010, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    11. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the marginal abatement cost curve of CO₂ emissions in China: Provincial panel data analysis," Kiel Working Papers 1985, Kiel Institute for the World Economy (IfW Kiel).
    12. Xin Su & Frédéric Ghersi & Fei Teng & Gaëlle Treut & Meicong Liang, 2022. "The economic impact of a deep decarbonisation pathway for China: a hybrid model analysis through bottom-up and top-down linking," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-37, January.
    13. Minxing Jiang & Bangzhu Zhu & Julien Chevallier & Rui Xie, 2018. "Allocating provincial CO2 quotas for the Chinese national carbon program," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 457-479, July.
    14. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    15. Baudry, Marc & Faure, Anouk & Quemin, Simon, 2021. "Emissions trading with transaction costs," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    16. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    17. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    18. Gagelmann, Frank, 2003. "E.T. and innovation - science fiction or reality? An assessment of the impact of emissions trading on innovation," UFZ Discussion Papers 13/2003, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    19. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.
    20. Naoto Aoyama & Emilson Caputo Delfino Silva, 2022. "Endogenous Abatement Technology Agreements under Environmental Regulation," Games, MDPI, vol. 13(2), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:198:y:2025:i:c:s0301421525000126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.