IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v35y2011i4p528-544.html
   My bibliography  Save this article

Environmental regulation, technological diversity, and the dynamics of technological change

Author

Listed:
  • Krysiak, Frank C.

Abstract

Inducing technological progress is an important objective of environmental regulation. We investigate under which conditions regulation-induced technological progress pursues the best technological option. We analyze a setting with vertical and horizontal technological progress, cost uncertainty, time-limited patent protection, and a case that is typical for some emissi4on-intensive industries, like electricity generation or the chemical industry. Under taxes and standards, only the current least-cost technology is used and developed, implying a lock-in into a possibly inferior technology. Tradable permits yield slower progress but can facilitate the simultaneous development of technologies, rendering lock-ins less likely.

Suggested Citation

  • Krysiak, Frank C., 2011. "Environmental regulation, technological diversity, and the dynamics of technological change," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 528-544, April.
  • Handle: RePEc:eee:dyncon:v:35:y:2011:i:4:p:528-544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(10)00268-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nishide, Katsumasa & Nomi, Ernesto Kazuhiro, 2009. "Regime uncertainty and optimal investment timing," Journal of Economic Dynamics and Control, Elsevier, vol. 33(10), pages 1796-1807, October.
    2. DeBrock, Lawrence M, 1985. "Market Structure, Innovation, and Optimal Patent Life," Journal of Law and Economics, University of Chicago Press, vol. 28(1), pages 223-244, April.
    3. Zhao, Jinhua, 2003. "Irreversible abatement investment under cost uncertainties: tradable emission permits and emissions charges," Journal of Public Economics, Elsevier, vol. 87(12), pages 2765-2789, December.
    4. Martin L. Weitzman, 1974. "Prices vs. Quantities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(4), pages 477-491.
    5. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    6. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    7. Krysiak, Frank C., 2008. "Prices vs. quantities: The effects on technology choice," Journal of Public Economics, Elsevier, vol. 92(5-6), pages 1275-1287, June.
    8. Lieberman, Marvin B, 1987. "Excess Capacity as a Barrier to Entry: An Empirical Appraisal," Journal of Industrial Economics, Wiley Blackwell, vol. 35(4), pages 607-627, June.
    9. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    10. Margaret Insley, 2003. "On the option to invest in pollution control under a regime of tradable emissions allowances," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 860-883, November.
    11. Garcia-Vega, Maria, 2006. "Does technological diversification promote innovation?: An empirical analysis for European firms," Research Policy, Elsevier, vol. 35(2), pages 230-246, March.
    12. Maia David & Bernard Sinclair-Desgagné, 2005. "Environmental Regulation and the Eco-Industry," Journal of Regulatory Economics, Springer, vol. 28(2), pages 141-155, September.
    13. Parry, Ian W. H., 1995. "Optimal pollution taxes and endogenous technological progress," Resource and Energy Economics, Elsevier, vol. 17(1), pages 69-85, May.
    14. Katz, Michael L & Shapiro, Carl, 1986. "Technology Adoption in the Presence of Network Externalities," Journal of Political Economy, University of Chicago Press, vol. 94(4), pages 822-841, August.
    15. Jeroen van den Bergh & John Gowdy, 2000. "Evolutionary Theories in Environmental and Resource Economics: Approaches and Applications," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 17(1), pages 37-57, September.
    16. Martin L. Weitzman, 1998. "Recombinant Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(2), pages 331-360.
    17. Goeschl, Timo & Perino, Grischa, 2007. "Innovation without magic bullets: Stock pollution and R&D sequences," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 146-161, September.
    18. van den Bergh, Jeroen C.J.M., 2008. "Optimal diversity: Increasing returns versus recombinant innovation," Journal of Economic Behavior & Organization, Elsevier, vol. 68(3-4), pages 565-580, December.
    19. Richard Gilbert & Carl Shapiro, 1990. "Optimal Patent Length and Breadth," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 106-112, Spring.
    20. Lippman, Steven A & McCardle, Kevin F & Rumelt, Richard P, 1991. "Heterogeneity under Competition," Economic Inquiry, Western Economic Association International, vol. 29(4), pages 774-782, October.
    21. Fischer, Carolyn & Parry, Ian W. H. & Pizer, William A., 2003. "Instrument choice for environmental protection when technological innovation is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 523-545, May.
    22. Denicolo, Vincenzo, 1999. "Pollution-Reducing Innovations under Taxes or Permits," Oxford Economic Papers, Oxford University Press, vol. 51(1), pages 184-199, January.
    23. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    24. Grischa Perino, 2008. "The merits of new pollutants and how to get them when patents are granted," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(3), pages 313-327, July.
    25. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    26. Mills, David E. & Smith, William, 1996. "It pays to be different: Endogenous heterogeneity of firms in an oligopoly," International Journal of Industrial Organization, Elsevier, vol. 14(3), pages 317-329, May.
    27. Downing, Paul B. & White, Lawrence J., 1986. "Innovation in pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 13(1), pages 18-29, March.
    28. Tse, Edison, 2002. "Grabber-holder dynamics and network effects in technology innovation," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1721-1738, August.
    29. van den Heuvel, Stijn T.A. & van den Bergh, Jeroen C.J.M., 2009. "Multilevel assessment of diversity, innovation and selection in the solar photovoltaic industry," Structural Change and Economic Dynamics, Elsevier, vol. 20(1), pages 50-60, March.
    30. Iwai, Katsuhito, 2000. "A contribution to the evolutionary theory of innovation, imitation and growth," Journal of Economic Behavior & Organization, Elsevier, vol. 43(2), pages 167-198, October.
    31. Moslener, Ulf & Requate, Till, 2007. "Optimal abatement in dynamic multi-pollutant problems when pollutants can be complements or substitutes," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2293-2316, July.
    32. Kaboski, Joseph P., 2005. "Factor price uncertainty, technology choice and investment delay," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 509-527, March.
    33. Till Requate, 2005. "Timing and Commitment of Environmental Policy, Adoption of New Technology, and Repercussions on R&D," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 175-199, June.
    34. Popp, David, 2006. "Innovation in climate policy models: Implementing lessons from the economics of R&D," Energy Economics, Elsevier, vol. 28(5-6), pages 596-609, November.
    35. Feenstra, Talitha & Kort, Peter M. & de Zeeuw, Aart, 2001. "Environmental policy instruments in an international duopoly with feedback investment strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1665-1687, October.
    36. Denicolo, Vincenzo, 1996. "Patent Races and Optimal Patent Breadth and Length," Journal of Industrial Economics, Wiley Blackwell, vol. 44(3), pages 249-265, September.
    37. Requate, Till & Unold, Wolfram, 2003. "Environmental policy incentives to adopt advanced abatement technology:: Will the true ranking please stand up?," European Economic Review, Elsevier, vol. 47(1), pages 125-146, February.
    38. Mills, David E., 1986. "Flexibility and firm diversity with demand fluctuations," International Journal of Industrial Organization, Elsevier, vol. 4(2), pages 203-215, June.
    39. Requate, Till, 2005. "Dynamic incentives by environmental policy instruments--a survey," Ecological Economics, Elsevier, vol. 54(2-3), pages 175-195, August.
    40. Magat, Wesley A., 1978. "Pollution control and technological advance: A dynamic model of the firm," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 1-25, March.
    41. Milliman, Scott R. & Prince, Raymond, 1989. "Firm incentives to promote technological change in pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 17(3), pages 247-265, November.
    42. Moledina, Amyaz A. & Coggins, Jay S. & Polasky, Stephen & Costello, Christopher, 2003. "Dynamic environmental policy with strategic firms: prices versus quantities," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 356-376, March.
    43. Tarui, Nori & Polasky, Stephen, 2005. "Environmental regulation with technology adoption, learning and strategic behavior," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 447-467, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krysiak, Frank C., 2008. "Prices vs. quantities: The effects on technology choice," Journal of Public Economics, Elsevier, vol. 92(5-6), pages 1275-1287, June.
    2. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    3. Carmen Arguedas & Francisco Cabo & Guiomar Martín-Herrán, 2017. "Optimal Pollution Standards and Non-compliance in a Dynamic Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 537-567, November.
    4. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    5. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    6. Halvor Briseid Storrøsten, 2012. "Prices vs. quantities: Technology choice, uncertainty and welfare," Discussion Papers 677, Statistics Norway, Research Department.
    7. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    8. Halvor Briseid Storrøsten, 2014. "Prices vs. Quantities with Endogenous Cost Structure," CESifo Working Paper Series 4625, CESifo.
    9. Hattori, Keisuke, 2011. "Optimal Environmental Policy under Monopolistic Provision of Clean Technologies," MPRA Paper 28837, University Library of Munich, Germany.
    10. Ye, Fanglin & Paulson, Nicholas & Khanna, Madhu, 2022. "Are renewable energy policies effective to promote technological change? The role of induced technological risk," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    11. Larry Karp & Jiangfeng Zhang, 2016. "Taxes Versus Quantities for a Stock Pollutant with Endogenous Abatement Costs and Asymmetric Information," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 493-533, Springer.
    12. Alessio D’Amato & Bouwe R. Dijkstra, 2018. "Adoption incentives and environmental policy timing under asymmetric information and strategic firm behaviour," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 125-155, January.
    13. Mehdi Fadaee & Luca Lambertini, 2015. "Non-tradeable pollution permits as green R&D incentives," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 27-42, January.
    14. Hattori, Keisuke, 2010. "Firm Incentives for Environmental R&D under Non-cooperative and Cooperative Policies," MPRA Paper 24754, University Library of Munich, Germany.
    15. Julien Jacob & Sandrine Spaeter, 2016. "Large-Scale Risks and Technological Change: What About Limited Liability?," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 18(1), pages 125-142, February.
    16. Charles D. Kolstad, 2011. "Regulatory Choice with Pollution and Innovation," NBER Chapters, in: The Design and Implementation of US Climate Policy, pages 65-74, National Bureau of Economic Research, Inc.
    17. Idrissa Sibailly, 2013. "On licensing and diffusion of clean technologies in oligopoly," Working Papers hal-00911453, HAL.
    18. D’Amato, Alessio & Dijkstra, Bouwe R., 2015. "Technology choice and environmental regulation under asymmetric information," Resource and Energy Economics, Elsevier, vol. 41(C), pages 224-247.
    19. Storrøsten, Halvor Briseid, 2015. "Prices vs. quantities with endogenous cost structure and optimal policy," Resource and Energy Economics, Elsevier, vol. 41(C), pages 143-163.
    20. Halvor Storrøsten, 2014. "Prices Versus Quantities: Technology Choice, Uncertainty and Welfare," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 275-293, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:35:y:2011:i:4:p:528-544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.