IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/6903.html
   My bibliography  Save this paper

Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review

Author

Listed:
  • Malla, Sunil
  • Timilsina, Govinda R

Abstract

Improving access to affordable and reliable energy services for cooking is essential for developing countries in reducing adverse human health and environmental impacts hitherto caused by burning of traditional biomass. This paper reviews empirical studies that analyze choices of fuel and adoption of improved stoves for cooking in countries where biomass is still the predominant cooking fuel. The review highlights the wide range of factors that influence households’ cooking fuel choices and adoption of improved stoves, including socioeconomic (access and availability, collection costs and fuel prices, household income, education and awareness), behavioral (food tastes, lifestyle), and cultural and external factors (indoor air pollution, government policies). The paper also summarizes the evidence on the significant adverse health impacts from exposure to indoor smoke, especially among women and young children. In low-income households, perceived health benefits of adopting improved stoves and financial benefits from fuel savings tend to be outweighed by the costs of improved stoves, even after accounting for the opportunity cost of time spent collecting biomass fuel. The paper identifies knowledge and evidence gaps on the success of policies and programs designed to scale up the adoption of improved cookstoves.

Suggested Citation

  • Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
  • Handle: RePEc:wbk:wbrwps:6903
    as

    Download full text from publisher

    File URL: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2014/06/03/000158349_20140603155910/Rendered/PDF/WPS6903.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McGranahan, Gordon, 1991. "Fuelwood, subsistence foraging, and the decline of common property," World Development, Elsevier, vol. 19(10), pages 1275-1287, October.
    2. Walekhwa, Peter N. & Mugisha, Johnny & Drake, Lars, 2009. "Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications," Energy Policy, Elsevier, vol. 37(7), pages 2754-2762, July.
    3. Beyene, Abebe D. & Koch, Steven F., 2013. "Clean fuel-saving technology adoption in urban Ethiopia," Energy Economics, Elsevier, vol. 36(C), pages 605-613.
    4. Alem, Yonas & Hassen, Sied & Kohlin, Gunnar, 2013. "The Dynamics of Electric Cookstove Adoption: Panel Data Evidence from Ethiopia," RFF Working Paper Series dp-13-03-efd, Resources for the Future.
    5. Shahidur R. Khandker, Hussain A. Samad, Rubaba Ali, and Douglas F. Barnes, 2014. "Who Benefits Most from Rural Electrification? Evidence in India," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. Subhrendu K. Pattanayak & Alexander Pfaff, 2009. "Behavior, Environment, and Health in Developing Countries: Evaluation and Valuation," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 183-217, September.
    7. Ouedraogo, Boukary, 2006. "Household energy preferences for cooking in urban Ouagadougou, Burkina Faso," Energy Policy, Elsevier, vol. 34(18), pages 3787-3795, December.
    8. Mani Nepal & Apsara Nepal & Kristin Grimsurd, "undated". "Unbelievable but True -- Improved cook-stoves are not helpful in reducing firewood demand in Nepal," Working papers 51, The South Asian Network for Development and Environmental Economics.
    9. Hosier, Richard H. & Dowd, Jeffrey, 1987. "Household fuel choice in Zimbabwe : An empirical test of the energy ladder hypothesis," Resources and Energy, Elsevier, vol. 9(4), pages 347-361, December.
    10. Rema Hanna & Esther Duflo & Michael Greenstone, 2016. "Up in Smoke: The Influence of Household Behavior on the Long-Run Impact of Improved Cooking Stoves," American Economic Journal: Economic Policy, American Economic Association, vol. 8(1), pages 80-114, February.
    11. Kshirsagar, Milind P. & Kalamkar, Vilas R., 2014. "A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 580-603.
    12. Ekholm, Tommi & Krey, Volker & Pachauri, Shonali & Riahi, Keywan, 2010. "Determinants of household energy consumption in India," Energy Policy, Elsevier, vol. 38(10), pages 5696-5707, October.
    13. Bielecki, Christopher & Wingenbach, Gary, 2014. "Rethinking improved cookstove diffusion programs: A case study of social perceptions and cooking choices in rural Guatemala," Energy Policy, Elsevier, vol. 66(C), pages 350-358.
    14. Gebreegziabher, Zenebe & Mekonnen, Alemu & Kassie, Menale & Köhlin, Gunnar, 2012. "Urban energy transition and technology adoption: The case of Tigrai, northern Ethiopia," Energy Economics, Elsevier, vol. 34(2), pages 410-418.
    15. Troncoso, Karin & Castillo, Alicia & Merino, Leticia & Lazos, Elena & Masera, Omar R., 2011. "Understanding an improved cookstove program in rural Mexico: An analysis from the implementers' perspective," Energy Policy, Elsevier, vol. 39(12), pages 7600-7608.
    16. Kanagawa, Makoto & Nakata, Toshihiko, 2007. "Analysis of the energy access improvement and its socio-economic impacts in rural areas of developing countries," Ecological Economics, Elsevier, vol. 62(2), pages 319-329, April.
    17. Kavi Kumar, K.S. & Viswanathan, Brinda, 2007. "Changing structure of income indoor air pollution relationship in India," Energy Policy, Elsevier, vol. 35(11), pages 5496-5504, November.
    18. Grieshop, Andrew P. & Marshall, Julian D. & Kandlikar, Milind, 2011. "Health and climate benefits of cookstove replacement options," Energy Policy, Elsevier, vol. 39(12), pages 7530-7542.
    19. Cooke, Priscilla & Kã–Hlin, Gunnar & Hyde, William F., 2008. "Fuelwood, forests and community management – evidence from household studies," Environment and Development Economics, Cambridge University Press, vol. 13(1), pages 103-135, February.
    20. Jingchao, Zhang & Kotani, Koji, 2012. "The determinants of household energy demand in rural Beijing: Can environmentally friendly technologies be effective?," Energy Economics, Elsevier, vol. 34(2), pages 381-388.
    21. Campbell, B. M. & Vermeulen, S. J. & Mangono, J. J. & Mabugu, R., 2003. "The energy transition in action: urban domestic fuel choices in a changing Zimbabwe," Energy Policy, Elsevier, vol. 31(6), pages 553-562, May.
    22. Karekezi, Stephen & Majoro, Lugard, 2002. "Improving modern energy services for Africa's urban poor," Energy Policy, Elsevier, vol. 30(11-12), pages 1015-1028, September.
    23. Sehjpal, Ritika & Ramji, Aditya & Soni, Anmol & Kumar, Atul, 2014. "Going beyond incomes: Dimensions of cooking energy transitions in rural India," Energy, Elsevier, vol. 68(C), pages 470-477.
    24. Anozie, A.N. & Bakare, A.R. & Sonibare, J.A. & Oyebisi, T.O., 2007. "Evaluation of cooking energy cost, efficiency, impact on air pollution and policy in Nigeria," Energy, Elsevier, vol. 32(7), pages 1283-1290.
    25. Jean Hugues Nlom & Aziz A. Karimov, 2014. "Modeling Fuel Choice Among Households in Northern Cameroon," WIDER Working Paper Series wp-2014-038, World Institute for Development Economic Research (UNU-WIDER).
    26. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    27. Andadari, Roos Kities & Mulder, Peter & Rietveld, Piet, 2014. "Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia," Energy Policy, Elsevier, vol. 66(C), pages 436-449.
    28. Pachauri, Shonali & Jiang, Leiwen, 2008. "The household energy transition in India and China," Energy Policy, Elsevier, vol. 36(11), pages 4022-4035, November.
    29. Troncoso, Karin & Castillo, Alicia & Masera, Omar & Merino, Leticia, 2007. "Social perceptions about a technological innovation for fuelwood cooking: Case study in rural Mexico," Energy Policy, Elsevier, vol. 35(5), pages 2799-2810, May.
    30. Jain, Garima, 2010. "Energy security issues at household level in India," Energy Policy, Elsevier, vol. 38(6), pages 2835-2845, June.
    31. Bailis, Rob & Cowan, Amanda & Berrueta, Victor & Masera, Omar, 2009. "Arresting the Killer in the Kitchen: The Promises and Pitfalls of Commercializing Improved Cookstoves," World Development, Elsevier, vol. 37(10), pages 1694-1705, October.
    32. Kojima, Masami & Bacon, Robert & Zhou, Xin, 2011. "Who uses bottled gas ? evidence from households in developing countries," Policy Research Working Paper Series 5731, The World Bank.
    33. Afrane, George & Ntiamoah, Augustine, 2012. "Analysis of the life-cycle costs and environmental impacts of cooking fuels used in Ghana," Applied Energy, Elsevier, vol. 98(C), pages 301-306.
    34. Nepal, Mani & Nepal, Apsara & Grimsrud, Kristine, 2011. "Unbelievable but improved cookstoves are not helpful in reducing firewood demand in Nepal," Environment and Development Economics, Cambridge University Press, vol. 16(1), pages 1-23, February.
    35. Jean Hugues Nlom & Aziz A. Karimov, 2015. "Modeling Fuel Choice among Households in Northern Cameroon," Sustainability, MDPI, Open Access Journal, vol. 7(8), pages 1-11, July.
    36. Heltberg, Rasmus, 2004. "Fuel switching: evidence from eight developing countries," Energy Economics, Elsevier, vol. 26(5), pages 869-887, September.
    37. Koffi Ekouevi & Voravate Tuntivate, 2012. "Household Energy Access for Cooking and Heating : Lessons Learned and the Way Forward," World Bank Publications - Books, The World Bank Group, number 9372, December.
    38. Lee, Lisa Yu-Ting, 2013. "Household energy mix in Uganda," Energy Economics, Elsevier, vol. 39(C), pages 252-261.
    39. Gwavuya, S.G. & Abele, S. & Barfuss, I. & Zeller, M. & Müller, J., 2012. "Household energy economics in rural Ethiopia: A cost-benefit analysis of biogas energy," Renewable Energy, Elsevier, vol. 48(C), pages 202-209.
    40. Malla, Min Bikram & Bruce, Nigel & Bates, Elizabeth & Rehfuess, Eva, 2011. "Applying global cost-benefit analysis methods to indoor air pollution mitigation interventions in Nepal, Kenya and Sudan: Insights and challenges," Energy Policy, Elsevier, vol. 39(12), pages 7518-7529.
    41. Farsi, Mehdi & Filippini, Massimo & Pachauri, Shonali, 2007. "Fuel choices in urban Indian households," Environment and Development Economics, Cambridge University Press, vol. 12(6), pages 757-774, December.
    42. Sesan, Temilade, 2012. "Navigating the limitations of energy poverty: Lessons from the promotion of improved cooking technologies in Kenya," Energy Policy, Elsevier, vol. 47(C), pages 202-210.
    43. Akpalu, Wisdom & Dasmani, Isaac & Aglobitse, Peter B., 2011. "Demand for cooking fuels in a developing country: To what extent do taste and preferences matter?," Energy Policy, Elsevier, vol. 39(10), pages 6525-6531, October.
    44. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    45. Ramirez, Sebastian & Dwivedi, Puneet & Ghilardi, Adrian & Bailis, Robert, 2014. "Diffusion of non-traditional cookstoves across western Honduras: A social network analysis," Energy Policy, Elsevier, vol. 66(C), pages 379-389.
    46. Narasimha Rao, M. & Reddy, B. Sudhakara, 2007. "Variations in energy use by Indian households: An analysis of micro level data," Energy, Elsevier, vol. 32(2), pages 143-153.
    47. Arthur, Maria de Fatima S.R. & Zahran, Sammy & Bucini, Gabriela, 2010. "On the adoption of electricity as a domestic source by Mozambican households," Energy Policy, Elsevier, vol. 38(11), pages 7235-7249, November.
    48. Kishore, V.V.N & Ramana, P.V, 2002. "Improved cookstoves in rural India: how improved are they?," Energy, Elsevier, vol. 27(1), pages 47-63.
    49. Grant Miller & A. Mushfiq Mobarak, 2013. "Gender Differences in Preferences, Intra-Household Externalities, and Low Demand for Improved Cookstoves," NBER Working Papers 18964, National Bureau of Economic Research, Inc.
    50. Hiemstra-van der Horst, Greg & Hovorka, Alice J., 2008. "Reassessing the "energy ladder": Household energy use in Maun, Botswana," Energy Policy, Elsevier, vol. 36(9), pages 3333-3344, September.
    51. Arze del Granado, Francisco Javier & Coady, David & Gillingham, Robert, 2012. "The Unequal Benefits of Fuel Subsidies: A Review of Evidence for Developing Countries," World Development, Elsevier, vol. 40(11), pages 2234-2248.
    52. Xiaoping Wang & Janina Franco & Omar R. Masera & Karin Troncoso & Marta X. Rivera, 2013. "What Have We Learned about Household Biomass Cooking in Central America? [Qué hemos aprendido del uso de biomasa para cocinar en los hogares de América Central]," World Bank Publications - Reports 23693, The World Bank Group.
    53. Arnold, J.E. Michael & Kohlin, Gunnar & Persson, Reidar, 2006. "Woodfuels, livelihoods, and policy interventions: Changing Perspectives," World Development, Elsevier, vol. 34(3), pages 596-611, March.
    54. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    55. Ravindranath, N. H. & Ramakrishna, J., 1997. "Energy options for cooking in India," Energy Policy, Elsevier, vol. 25(1), pages 63-75, January.
    56. Alam, Manzoor & Sathaye, Jayant & Barnes, Doug, 1998. "Urban household energy use in India: efficiency and policy implications," Energy Policy, Elsevier, vol. 26(11), pages 885-891, September.
    57. Johan Martins, 2005. "The Impact of the Use of Energy Sources on the Quality of Life of Poor Communities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 72(3), pages 373-402, July.
    58. Gupta, Gautam & Kohlin, Gunnar, 2006. "Preferences for domestic fuel: Analysis with socio-economic factors and rankings in Kolkata, India," Ecological Economics, Elsevier, vol. 57(1), pages 107-121, April.
    59. Berrueta, Víctor M. & Edwards, Rufus D. & Masera, Omar R., 2008. "Energy performance of wood-burning cookstoves in Michoacan, Mexico," Renewable Energy, Elsevier, vol. 33(5), pages 859-870.
    60. Jan, Inayatullah, 2012. "What makes people adopt improved cookstoves? Empirical evidence from rural northwest Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3200-3205.
    61. Matsika, R. & Erasmus, B.F.N. & Twine, W.C., 2013. "Double jeopardy: The dichotomy of fuelwood use in rural South Africa," Energy Policy, Elsevier, vol. 52(C), pages 716-725.
    62. Kim, Jung Eun & Popp, David & Prag, Andrew, 2013. "The Clean Development Mechanism and neglected environmental technologies," Energy Policy, Elsevier, vol. 55(C), pages 165-179.
    63. Kebede, Bereket & Bekele, Almaz & Kedir, Elias, 2002. "Can the urban poor afford modern energy? The case of Ethiopia," Energy Policy, Elsevier, vol. 30(11-12), pages 1029-1045, September.
    64. Parikh, Jyoti, 2011. "Hardships and health impacts on women due to traditional cooking fuels: A case study of Himachal Pradesh, India," Energy Policy, Elsevier, vol. 39(12), pages 7587-7594.
    65. Takama, Takeshi & Tsephel, Stanzin & Johnson, Francis X., 2012. "Evaluating the relative strength of product-specific factors in fuel switching and stove choice decisions in Ethiopia. A discrete choice model of household preferences for clean cooking alternatives," Energy Economics, Elsevier, vol. 34(6), pages 1763-1773.
    66. Barnes, Douglas F. & Kumar, Priti & Openshaw, Keith, 2012. "Cleaner Hearths, Better Homes: New Stoves for India and the Developing World," OUP Catalogue, Oxford University Press, number 9780198078364.
    67. Hager, Tiffany J. & Morawicki, Ruben, 2013. "Energy consumption during cooking in the residential sector of developed nations: A review," Food Policy, Elsevier, vol. 40(C), pages 54-63.
    68. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    69. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    70. Bansal, Mohit & Saini, R.P. & Khatod, D.K., 2013. "Development of cooking sector in rural areas in India—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 44-53.
    71. Marc A Jeuland & Subhrendu K Pattanayak, 2012. "Benefits and Costs of Improved Cookstoves: Assessing the Implications of Variability in Health, Forest and Climate Impacts," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
    72. Barnes, Douglas F. & Khandker, Shahidur R. & Samad, Hussain A., 2011. "Energy poverty in rural Bangladesh," Energy Policy, Elsevier, vol. 39(2), pages 894-904, February.
    73. Liu, Wenling & Spaargaren, Gert & Heerink, Nico & Mol, Arthur P.J. & Wang, Can, 2013. "Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development," Energy Policy, Elsevier, vol. 55(C), pages 128-138.
    74. Gurung, Anup & Oh, Sang Eun, 2013. "Conversion of traditional biomass into modern bioenergy systems: A review in context to improve the energy situation in Nepal," Renewable Energy, Elsevier, vol. 50(C), pages 206-213.
    75. Wickramasinghe, Anoja, 2011. "Energy access and transition to cleaner cooking fuels and technologies in Sri Lanka: Issues and policy limitations," Energy Policy, Elsevier, vol. 39(12), pages 7567-7574.
    76. García-Frapolli, Eduardo & Schilmann, Astrid & Berrueta, Victor M. & Riojas-Rodríguez, Horacio & Edwards, Rufus D. & Johnson, Michael & Guevara-Sanginés, Alejandro & Armendariz, Cynthia & Masera, Omar, 2010. "Beyond fuelwood savings: Valuing the economic benefits of introducing improved biomass cookstoves in the Purépecha region of Mexico," Ecological Economics, Elsevier, vol. 69(12), pages 2598-2605, October.
    77. Mr. David Coady & Mr. Javier Arze del Granado, 2010. "The Unequal Benefits of Fuel Subsidies: A Review of Evidence for Developing Countries," IMF Working Papers 2010/202, International Monetary Fund.
    78. Douglas F. Barnes & Priti Kumar & Keith Openshaw, 2012. "Cleaner Hearths, Better Homes : New Stoves for India and the Developing World," World Bank Publications - Books, The World Bank Group, number 9366, December.
    79. John H. Y. Edwards & Christian Langpap, 2005. "Startup Costs and the Decision to Switch from Firewood to Gas Fuel," Land Economics, University of Wisconsin Press, vol. 81(4).
    80. Davis, Mark, 1998. "Rural household energy consumption : The effects of access to electricity--evidence from South Africa," Energy Policy, Elsevier, vol. 26(3), pages 207-217, February.
    81. Gundimeda, Haripriya & Kohlin, Gunnar, 2008. "Fuel demand elasticities for energy and environmental policies: Indian sample survey evidence," Energy Economics, Elsevier, vol. 30(2), pages 517-546, March.
    82. Mwampamba, Tuyeni Heita, 2007. "Has the woodfuel crisis returned? Urban charcoal consumption in Tanzania and its implications to present and future forest availability," Energy Policy, Elsevier, vol. 35(8), pages 4221-4234, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    2. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    3. Calzada, Joan & Sanz, Alex, 2018. "Universal access to clean cookstoves: Evaluation of a public program in Peru," Energy Policy, Elsevier, vol. 118(C), pages 559-572.
    4. Christophe Muller & Huijie Yan, 2018. "Household Fuel Use in Rural China," AMSE Working Papers 1808, Aix-Marseille School of Economics, France.
    5. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2014. "The impact of the household decision environment on fuel choice behavior," Energy Economics, Elsevier, vol. 44(C), pages 236-247.
    6. Olabisi, Michael & Tschirley, David L. & Nyange, David & Awokuse, Titus, 2019. "Energy demand substitution from biomass to imported kerosene: Evidence from Tanzania," Energy Policy, Elsevier, vol. 130(C), pages 243-252.
    7. Jack Gregory & David I. Stern, 2012. "Fuel Choices in Rural Maharashtra," CCEP Working Papers 1207, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    8. Takama, Takeshi & Tsephel, Stanzin & Johnson, Francis X., 2012. "Evaluating the relative strength of product-specific factors in fuel switching and stove choice decisions in Ethiopia. A discrete choice model of household preferences for clean cooking alternatives," Energy Economics, Elsevier, vol. 34(6), pages 1763-1773.
    9. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2017. "Factors determining household use of clean and renewable energy sources for lighting in Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 661-672.
    10. Rahut, Dil Bahadur & Das, Sukanya & De Groote, Hugo & Behera, Bhagirath, 2014. "Determinants of household energy use in Bhutan," Energy, Elsevier, vol. 69(C), pages 661-672.
    11. Andadari, Roos Kities & Mulder, Peter & Rietveld, Piet, 2014. "Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia," Energy Policy, Elsevier, vol. 66(C), pages 436-449.
    12. Vanschoenwinkel, Janka & Lizin, Sebastien & Swinnen, Gilbert & Azadi, Hossein & Van Passel, Steven, 2014. "Solar cooking in Senegalese villages: An application of best–worst scaling," Energy Policy, Elsevier, vol. 67(C), pages 447-458.
    13. Lohri, Christian Riuji & Rajabu, Hassan Mtoro & Sweeney, Daniel J. & Zurbrügg, Christian, 2016. "Char fuel production in developing countries – A review of urban biowaste carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1514-1530.
    14. Lee, Soo Min & Kim, Yeon-Su & Jaung, Wanggi & Latifah, Sitti & Afifi, Mansur & Fisher, Larry A., 2015. "Forests, fuelwood and livelihoods—energy transition patterns in eastern Indonesia," Energy Policy, Elsevier, vol. 85(C), pages 61-70.
    15. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    16. Akhter Ali & Dil Bahadur Rahut & Khondoker Abdul Mottaleb & Jeetendra Prakash Aryal, 2019. "Alternate energy sources for lighting among rural households in the Himalayan region of Pakistan: Access and impact," Energy & Environment, , vol. 30(7), pages 1291-1312, November.
    17. Zhang, Xiao-Bing & Hassen, Sied, 2017. "Household fuel choice in urban China: evidence from panel data," Environment and Development Economics, Cambridge University Press, vol. 22(4), pages 392-413, August.
    18. Tafadzwa Makonese & Ayodeji P Ifegbesan & Isaac T Rampedi, 2018. "Household cooking fuel use patterns and determinants across southern Africa: Evidence from the demographic and health survey data," Energy & Environment, , vol. 29(1), pages 29-48, February.
    19. Arthur, Maria de Fatima S.R. & Zahran, Sammy & Bucini, Gabriela, 2010. "On the adoption of electricity as a domestic source by Mozambican households," Energy Policy, Elsevier, vol. 38(11), pages 7235-7249, November.
    20. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:6903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.