IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4140-d1395109.html
   My bibliography  Save this article

Environmental, Energy, and Techno-Economic Assessment of Waste-to-Energy Incineration

Author

Listed:
  • Jincan Zeng

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Ade Brian Mustafa

    (School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Minwei Liu

    (Planning & Research Center for Power Grid, Yunnan Power Grid Corp., Kunming 650011, China)

  • Guori Huang

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Nan Shang

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Xi Liu

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Kexin Wei

    (School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Peng Wang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Huijuan Dong

    (School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

Waste-to-energy (WtE) incineration is a feasible way to respond to both the municipal solid waste management and renewable energy challenges, but few studies have been carried out on its environmental and economic impact in fast-developing southeastern Asian countries. To fill such a research gap, this study innovatively conducted a holistic assessment of WtE incineration application potential in Java Island, Indonesia. Here, we have established a life cycle assessment model for WtE incineration in Java, and have estimated the environmental impact, electricity generation potential, and techno-economic feasibility of implementing incineration by 2025. We have revealed that global warming potential, terrestrial ecotoxicity potential, eutrophication potential, and acidification potential are the major environmental impacts stemming from incineration activities. Moreover, we have estimated that promoting incineration in Java could reduce CO 2 emissions by 41% on average. The electricity generated from incineration could contribute to 3.72% of Indonesia’s renewable energy target for the electricity grid mix by 2025. The cumulative energy production potential from incineration is estimated to reach 2,316,523 MWh/year in 2025 and will increase by 14.3% in 2050. The techno-economic assessment of incineration implementation in Java cities has been enumerated as feasible. The levelized cost of electricity from incineration (0.044 USD/kWh) is competitive with the current Indonesian electricity price (0.069 USD/kWh). Policies of minimizing incineration pollution, providing financial support guarantees, and overcoming social barriers have been proposed to facilitate the application of WtE incineration.

Suggested Citation

  • Jincan Zeng & Ade Brian Mustafa & Minwei Liu & Guori Huang & Nan Shang & Xi Liu & Kexin Wei & Peng Wang & Huijuan Dong, 2024. "Environmental, Energy, and Techno-Economic Assessment of Waste-to-Energy Incineration," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4140-:d:1395109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Menikpura, S.N.M. & Sang-Arun, Janya & Bengtsson, Magnus, 2016. "Assessment of environmental and economic performance of Waste-to-Energy facilities in Thai cities," Renewable Energy, Elsevier, vol. 86(C), pages 576-584.
    2. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    3. Timilsina,Govinda R., 2020. "Demystifying the Costs of Electricity Generation Technologies," Policy Research Working Paper Series 9303, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    2. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    3. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    4. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.
    5. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    6. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    7. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    8. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    9. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    10. Zhou, Jianzhao & Ayub, Yousaf & Shi, Tao & Ren, Jingzheng & He, Chang, 2024. "Sustainable co-valorization of medical waste and biomass waste: Innovative process design, optimization and assessment," Energy, Elsevier, vol. 288(C).
    11. Ga-Eun Jung & Hae-Jin Sung & Minh-Chau Dinh & Minwon Park & Hyunkyoung Shin, 2021. "A Comparative Analysis of Economics of PMSG and SCSG Floating Offshore Wind Farms," Energies, MDPI, vol. 14(5), pages 1-18, March.
    12. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    13. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    14. Ioannis E. Kosmadakis & Costas Elmasides, 2021. "A Sizing Method for PV–Battery–Generator Systems for Off-Grid Applications Based on the LCOE," Energies, MDPI, vol. 14(7), pages 1-29, April.
    15. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    16. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    17. Shuxin Mao & Sha Qiu & Tao Li & Mingfang Tang & Hongbing Deng & Hua Zheng, 2020. "Using Characteristic Energy to Study Rural Ethnic Minorities’ Household Energy Consumption and Its Impact Factors in Chongqing, China," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    18. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    19. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    20. Henni, Sarah & Staudt, Philipp & Weinhardt, Christof, 2021. "A sharing economy for residential communities with PV-coupled battery storage: Benefits, pricing and participant matching," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4140-:d:1395109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.