IDEAS home Printed from https://ideas.repec.org/a/gta/jnlgea/v3y2018i1p122-155.html
   My bibliography  Save this article

New Data for Representing Irrigated Agriculture in Economy-Wide Models

Author

Listed:
  • Kirby Ledvina
  • Niven Winchester
  • Kenneth Strzepek
  • John M. Reilly

Abstract

We develop a framework to represent the production value and expansion potential of irrigated land within economy-wide models, providing integrated assessment capabilities for energy-land-water interactions. The scope to expand irrigated land is quantified through irrigable land supply curves for 126 water regions globally based on water availability and the annual costs of irrigation infrastructure. Upgrades in irrigation infrastructure include (1) increasing water storage, (2) improving conveyance efficiency, and (3) improving irrigation efficiency. The value of production on irrigated and rainfed cropland is computed at both a 5 arcminute by 5 arcminute level and for the 140 regions and eight crop sectors in Version 9 of the Global Trade Analysis Project (GTAP) Data Base using estimates of production quantities and prices from the year 2000. This work facilitates the representation of endogenous investment in irrigation infrastructure and allows for a more rigorous exploration of the regional and global impacts of water availability on land use, energy production, and economic activity.

Suggested Citation

  • Kirby Ledvina & Niven Winchester & Kenneth Strzepek & John M. Reilly, 2018. "New Data for Representing Irrigated Agriculture in Economy-Wide Models," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(1), pages 122-155, June.
  • Handle: RePEc:gta:jnlgea:v:3:y:2018:i:1:p:122-155
    DOI: http://dx.doi.org/10.21642/JGEA.030103AF
    as

    Download full text from publisher

    File URL: https://www.jgea.org/ojs/index.php/jgea/article/view/54/59
    Download Restriction: no

    File URL: https://libkey.io/http://dx.doi.org/10.21642/JGEA.030103AF?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Taheripour, Farzad & Hertel, Thomas & Sahin, Sebnem, 2016. "Economic and land use impacts of improving water use efficiency in South Asia," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236063, Agricultural and Applied Economics Association.
    2. Katherine Calvin & Marshall Wise & Page Kyle & Pralit Patel & Leon Clarke & Jae Edmonds, 2014. "Trade-offs of different land and bioenergy policies on the path to achieving climate targets," Climatic Change, Springer, vol. 123(3), pages 691-704, April.
    3. Wise, Marshall & Dooley, James & Luckow, Patrick & Calvin, Katherine & Kyle, Page, 2014. "Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century," Applied Energy, Elsevier, vol. 114(C), pages 763-773.
    4. Govinda R. Timilsina & John C. Beghin & Dominique van der Mensbrugghe & Simon Mevel, 2012. "The impacts of biofuels targets on land‐use change and food supply: A global CGE assessment," Agricultural Economics, International Association of Agricultural Economists, vol. 43(3), pages 315-332, May.
    5. Jeffrey C Peters, 2016. "The GTAP-Power Data Base: Disaggregating the Electricity Sector in the GTAP Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 209-250, June.
    6. Jing Liu & Thomas Hertel & Farzad Taheripour, 2016. "Analyzing Future Water Scarcity in Computable General Equilibrium Models," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-30, December.
    7. Winchester, Niven & Reilly, John M., 2015. "The feasibility, costs, and environmental implications of large-scale biomass energy," Energy Economics, Elsevier, vol. 51(C), pages 188-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    2. Niven Winchester & Kirby Ledvina & Kenneth Strzepek & John M. Reilly, 2018. "The impact of water scarcity on food, bioenergy and deforestation," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 327-351, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Nilsson, 2018. "Reflections on the Economic Modelling of Free Trade Agreements," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(1), pages 156-186, June.
    2. Winchester, Niven & Ledvina, Kirby, 2017. "The impact of oil prices on bioenergy, emissions and land use," Energy Economics, Elsevier, vol. 65(C), pages 219-227.
    3. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    4. Winchester, Niven & Reilly, John M., 2015. "The feasibility, costs, and environmental implications of large-scale biomass energy," Energy Economics, Elsevier, vol. 51(C), pages 188-203.
    5. Gouzaye, Amadou & Epplin, Francis M., 2016. "Land requirements, feedstock haul distance, and expected profit response to land use restrictions for switchgrass production," Energy Economics, Elsevier, vol. 58(C), pages 59-66.
    6. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
    7. Iman Haqiqi & Farzad Taheripour & Jing Liu & Dominique van der Mensbrugghe, 2016. "Introducing Irrigation Water into GTAP Data Base Version 9," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 116-155, December.
    8. Szulczyk, Kenneth R. & Ziaei, Sayyed Mahdi & Zhang, Changyong, 2021. "Environmental ramifications and economic viability of bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 172(C), pages 780-788.
    9. Arun Singh & Niven Winchester & Valerie J. Karplus, 2019. "Evaluating India’S Climate Targets: The Implications Of Economy-Wide And Sector-Specific Policies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 1-29, August.
    10. Szulczyk, Kenneth R. & Cheema, Muhammad A. & Cullen, Ross & Khan, Atiqur Rahman, 2020. "Bioelectricity in Malaysia: economic feasibility, environmental and deforestation implications," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.
    11. Ryna Yiyun Cui & Stephanie Waldhoff & Leon Clarke & Nathan Hultman & Anand Patwardhan & Elisabeth A. Gilmore, 2022. "Evaluating the regional risks to food availability and access from land-based climate policies in an integrated assessment model," Environment Systems and Decisions, Springer, vol. 42(4), pages 547-555, December.
    12. Dick, Ndukwe Agbai & Wilson, Paul, 2018. "Analysis of the inherent energy-food dilemma of the Nigerian biofuels policy using partial equilibrium model: The Nigerian Energy-Food Model (NEFM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 500-514.
    13. Ehsanreza Sajedinia & Wallace E. Tyner, 2021. "Use of General Equilibrium Models in Evaluating Biofuels Policies," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 14, pages 437-465, World Scientific Publishing Co. Pte. Ltd..
    14. Frank van Tongeren & Robert Koopman & Stephen Karingi & John Reilly & Joseph Francois, 2021. "Back to the Future: A 25-Year Retrospective on GTAP and the Shaping of a New Agenda," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 3, pages 41-93, World Scientific Publishing Co. Pte. Ltd..
    15. Khan, Syed Abdul Rehman & Zaman, Khalid & Zhang, Yu, 2016. "The relationship between energy-resource depletion, climate change, health resources and the environmental Kuznets curve: Evidence from the panel of selected developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 468-477.
    16. Kym Anderson & Anna Strutt, 2012. "Agriculture and Food Security in Asia by 2030," Macroeconomics Working Papers 23309, East Asian Bureau of Economic Research.
    17. Winchester, Niven & Reilly, John M., 2020. "The economic and emissions benefits of engineered wood products in a low-carbon future," Energy Economics, Elsevier, vol. 85(C).
    18. Effendi, Yuventus & Resosudarmo, Budy, 2020. "Development of Renewable Energy in ASEAN Countries: Socio-economic and Environmental Impacts," Conference papers 333229, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. James Thurlow & Giacomo Branca & Erika Felix & Irini Maltsoglou & Luis E. Rincón, 2016. "Producing Biofuels in Low-Income Countries: An Integrated Environmental and Economic Assessment for Tanzania," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 153-171, June.
    20. Haile, M.G. & Kalkuhl, M., 2014. "Volatility in the international food markets: implications for global agricultural supply and for market and price policy," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 49, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gta:jnlgea:v:3:y:2018:i:1:p:122-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jeremy Douglas (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.