IDEAS home Printed from https://ideas.repec.org/p/ags/aare16/235791.html

The Feasibility, Costs, and Environmental Implications of Large-scale Biomass Energy

Author

Listed:
  • Winchester, Niven
  • Reilly, John

Abstract

What are the feasibility, costs, and environmental implications of large-scale bioenegry? We investigate this question by developing a detailed representation of bioenergy in a global economy-wide model. We develop a scenario with a global carbon dioxide price, applied to all anthropogenic emissions except those from land use change, that rises from $25 per metric ton in 2015 to $99 in 2050. This creates market conditions favorable to biomass energy, resulting in global non-traditional bioenergy production of ~150 exajoules (EJ) in 2050. By comparison, in 2010, global energy production was primarily from coal (138 EJ), oil (171 EJ), and gas (106 EJ). With this policy, 2050 emissions are 42% less in our Base Policy case than our Reference case, although extending the scope of the carbon price to include emissions from land use change would reduce 2050 emissions by 52% relative to the same baseline. Our results from various policy scenarios show that lignocellulosic (LC) ethanol may become the major form of bioenergy, if its production costs fall by amounts predicted in a recent survey and ethanol blending constraints disappear by 2030; however, if its costs remain higher than expected or the ethanol blend wall continues to bind, bioelectricity and bioheat may prevail. Higher LC ethanol costs may also result in the expanded production of first-generation biofuels (ethanol from sugarcane and corn) so that they remain in the fuel mix through 2050. Deforestation occurs if emissions from land use change are not priced, although the availability of biomass residues and improvements in crop yields and conversion efficiencies mitigate pressure on land markets. As regions are linked via international agricultural markets, irrespective of the location of bioenergy production, natural forest decreases are largest in regions with the lowest barriers to deforestation. In 2050, the combination of carbon price and bioenergy production increases food prices by 3.2%–5.2%, with bioene
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Winchester, Niven & Reilly, John, 2016. "The Feasibility, Costs, and Environmental Implications of Large-scale Biomass Energy," 2016 Conference (60th), February 2-5, 2016, Canberra, Australia 235791, Australian Agricultural and Resource Economics Society.
  • Handle: RePEc:ags:aare16:235791
    DOI: 10.22004/ag.econ.235791
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/235791/files/Winchester%20ppt%20upload.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.235791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Buus, Tomáš, 2017. "Energy efficiency and energy prices: A general mathematical framework," Energy, Elsevier, vol. 139(C), pages 743-754.
    3. Khan, Syed Abdul Rehman & Zaman, Khalid & Zhang, Yu, 2016. "The relationship between energy-resource depletion, climate change, health resources and the environmental Kuznets curve: Evidence from the panel of selected developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 468-477.
    4. Szulczyk, Kenneth R. & Ziaei, Sayyed Mahdi & Zhang, Changyong, 2021. "Environmental ramifications and economic viability of bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 172(C), pages 780-788.
    5. Niven Winchester & Kirby Ledvina & Kenneth Strzepek & John M. Reilly, 2018. "The impact of water scarcity on food, bioenergy and deforestation," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 327-351, July.
    6. Frank van Tongeren & Robert Koopman & Stephen Karingi & John Reilly & Joseph Francois, 2021. "Back to the Future: A 25-Year Retrospective on GTAP and the Shaping of a New Agenda," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 3, pages 41-93, World Scientific Publishing Co. Pte. Ltd..
    7. Frédéric Babonneau & Ahmed Badran & Maroua Benlahrech & Alain Haurie & Maxime Schenckery & Marc Vielle, 2021. "Economic assessment of the development of CO2 direct reduction technologies in long-term climate strategies of the Gulf countries," Climatic Change, Springer, vol. 165(3), pages 1-18, April.
    8. Emmanuel Galiwango & Ali H. Al-Marzuoqi & Abbas A. Khaleel & Mahdi M. Abu-Omar, 2020. "Investigation of Non-Isothermal Kinetics and Thermodynamic Parameters for the Pyrolysis of Different Date Palm Parts," Energies, MDPI, vol. 13(24), pages 1-19, December.
    9. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
    10. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    11. Winchester, Niven & Ledvina, Kirby & Strzepek, Kenneth & Reilly, John, 2016. "The Impact of Water Scarcity on Food, Deforestation and Bioenergy," Conference papers 332736, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Arun Singh & Niven Winchester & Valerie J. Karplus, 2019. "Evaluating India’S Climate Targets: The Implications Of Economy-Wide And Sector-Specific Policies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 1-29, August.
    13. Jennifer Morris & Angelo Gurgel & Bryan K. Mignone & Haroon Kheshgi & Sergey Paltsev, 2024. "Mutual reinforcement of land-based carbon dioxide removal and international emissions trading in deep decarbonization scenarios," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Lars Nilsson, 2018. "Reflections on the Economic Modelling of Free Trade Agreements," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(1), pages 156-186, June.
    15. Huang, Xiaodan & Chang, Shiyan & Zheng, Dingqian & Zhang, Xiliang, 2020. "The role of BECCS in deep decarbonization of China's economy: A computable general equilibrium analysis," Energy Economics, Elsevier, vol. 92(C).
    16. Kung, Chih-Chun & Zhang, Ning & Choi, Yongrok & Xiong, Kai & Yu, Jiangli, 2019. "Effectiveness of crop residuals in ethanol and pyrolysis-based electricity production: A stochastic analysis under uncertain climate impacts," Energy Policy, Elsevier, vol. 125(C), pages 267-276.
    17. Kirby Ledvina & Niven Winchester & Kenneth Strzepek & John M. Reilly, 2018. "New Data for Representing Irrigated Agriculture in Economy-Wide Models," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(1), pages 122-155, June.
    18. Dick, Ndukwe Agbai & Wilson, Paul, 2018. "Analysis of the inherent energy-food dilemma of the Nigerian biofuels policy using partial equilibrium model: The Nigerian Energy-Food Model (NEFM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 500-514.
    19. Winchester, Niven & Ledvina, Kirby, 2017. "The impact of oil prices on bioenergy, emissions and land use," Energy Economics, Elsevier, vol. 65(C), pages 219-227.
    20. Zhang, Jing & Mao, Chunlan & khan, Aman & Zhao, Shuai & Gao, Tianpeng & Mikhailovna Redina, Margarita & Zhang, Qing & Song, Peizhi & Liu, Pu & Li, Xiangkai, 2022. "Enhanced methane production by using phytoremediated Halogeton glomeratus as substrate via anaerobic digestion," Renewable Energy, Elsevier, vol. 194(C), pages 28-39.
    21. Gouzaye, Amadou & Epplin, Francis M., 2016. "Land requirements, feedstock haul distance, and expected profit response to land use restrictions for switchgrass production," Energy Economics, Elsevier, vol. 58(C), pages 59-66.
    22. Fabio G. Santeramo & Monica Delsignore & Enrica Imbert & Mariarosaria Lombardi, 2023. "The Future of the EU Bioenergy Sector: Economic, Environmental, Social, and Legislative Challenges," International Review of Environmental and Resource Economics, now publishers, vol. 17(1), pages 1-1–52, April.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • Q24 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Land
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aare16:235791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.