IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v211y2018icp820-842.html
   My bibliography  Save this article

Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach

Author

Listed:
  • Li, Peilin
  • Zhao, Pengjun
  • Brand, Christian

Abstract

Work on comparing cities in terms of their transport energy consumption and CO2 emissions in the urban passenger transport sector has rarely been done using detailed travel activity data that takes into account city level differences in terms of economic development, population, and urban form. A personal activity based approach is necessary to better reflect travel behavior change results from different social, economic, urban form, technical, and transportation policy situations in the future. The present study extends the existing activity, modal share, energy intensity, fuel/carbon intensity (ASIF) modeling framework by disaggregating travel activity into key structural components and city-specific factors for 288 prefectural level cities in China. Testable econometric modeling systems were built to link mode split and mode specific travel distances with local economic and urban form characteristics in four different population sizes and two urban form types, based on 187 travel surveys in 108 Chinese cities in the past two decades. Scenarios of energy use and carbon emissions between 2010 (baseline) and 2050 were developed. Results showed that in 2010 urban passenger road transport in China generated 396 Mt CO2 emissions and per capita urban passenger transport energy use increased as city size expanded. By 2030, under business as usual scenario assumptions, energy use in the urban passenger transport sector comprised 23.2 Mt of gasoline, 1.72 Mt of diesel, 3.36 billion M3 of natural gas, and 0.62 billion kWh of electricity. While national policies targeting travel behavior change have been shown to mitigate emissions to some extent, urban transport policies targeted at specific spatial and temporal drivers of energy demand and emissions may be more effective in meeting policy goals. Short-term policies that promote car-pooling and ride sharing and medium-term policies that increase the cost of driving and promote public transport (such as transit oriented development, walkable neighborhood design, and parking pricing/restraint in city centers) help stabilize carbon emissions over the long term. However, the decision of building polycentric cities might have less significant impact on mitigating urban passenger transport in big cities. Moreover, large-scale promotion of electric vehicles should be designed from a long-term perspective rather than from a short-term one to achieve balanced carbon emissions in regard to the decarbonization process of electricity generation in China.

Suggested Citation

  • Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
  • Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:820-842
    DOI: 10.1016/j.apenergy.2017.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917316021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Bofeng & Yang, Weishan & Cao, Dong & Liu, Lancui & Zhou, Ying & Zhang, Zhansheng, 2012. "Estimates of China's national and regional transport sector CO2 emissions in 2007," Energy Policy, Elsevier, vol. 41(C), pages 474-483.
    2. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    3. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    4. Richard Grimal & Roger Collet & Jean-Loup Madre, 2013. "Is the Stagnation of Individual Car Travel a General Phenomenon in France? A Time-Series Analysis by Zone of Residence and Standard of Living," Transport Reviews, Taylor & Francis Journals, vol. 33(3), pages 291-309, May.
    5. Mohammadi, Neda & Taylor, John E., 2017. "Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction," Applied Energy, Elsevier, vol. 195(C), pages 810-818.
    6. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    7. Klaus Hubacek & Kuishuang Feng & Bin Chen, 2011. "Changing Lifestyles Towards a Low Carbon Economy: An IPAT Analysis for China," Energies, MDPI, vol. 5(1), pages 1-10, December.
    8. Loo, Becky P.Y. & Li, Linna, 2012. "Carbon dioxide emissions from passenger transport in China since 1949: Implications for developing sustainable transport," Energy Policy, Elsevier, vol. 50(C), pages 464-476.
    9. Erling Holden & Ingrid T. Norland, 2005. "Three Challenges for the Compact City as a Sustainable Urban Form: Household Consumption of Energy and Transport in Eight Residential Areas in the Greater Oslo Region," Urban Studies, Urban Studies Journal Limited, vol. 42(12), pages 2145-2166, November.
    10. Ralph Buehler & John Pucher & Regine Gerike & Thomas Götschi, 2017. "Reducing car dependence in the heart of Europe: lessons from Germany, Austria, and Switzerland," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 4-28, January.
    11. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    12. Lin, Boqiang & Du, Zhili, 2015. "How China׳s urbanization impacts transport energy consumption in the face of income disparity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1693-1701.
    13. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    14. Zhang, Qingyu & Tian, Weili & Zheng, Yingyue & Zhang, Lili, 2010. "Fuel consumption from vehicles of China until 2030 in energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6860-6867, November.
    15. Zhou, Yang & Liu, Yansui, 2016. "Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China," Applied Energy, Elsevier, vol. 180(C), pages 800-809.
    16. Tobias Kuhnimhof & Dirk Zumkeller & Bastian Chlond, 2013. "Who Made Peak Car, and How? A Breakdown of Trends over Four Decades in Four Countries," Transport Reviews, Taylor & Francis Journals, vol. 33(3), pages 325-342, May.
    17. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    18. Wang, Zhaohua & Liu, Wei, 2015. "Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives," Applied Energy, Elsevier, vol. 158(C), pages 292-299.
    19. Yu, Qian & Li, Tiezhu & Li, Hu, 2016. "Improving urban bus emission and fuel consumption modeling by incorporating passenger load factor for real world driving," Applied Energy, Elsevier, vol. 161(C), pages 101-111.
    20. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Why have CO2 emissions increased in the transport sector in Asia ? underlying factors and policy options," Policy Research Working Paper Series 5098, The World Bank.
    21. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    22. Lee, Jong-Wha & Hong, Kiseok, 2012. "Economic growth in Asia: Determinants and prospects," Japan and the World Economy, Elsevier, vol. 24(2), pages 101-113.
    23. Redman, Lauren & Friman, Margareta & Gärling, Tommy & Hartig, Terry, 2013. "Quality attributes of public transport that attract car users: A research review," Transport Policy, Elsevier, vol. 25(C), pages 119-127.
    24. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
    25. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    26. Guoqiang Zhang & Yanmei Xu & Juan Zhang, 2016. "Consumer-Oriented Policy towards Diffusion of Electric Vehicles: City-Level Evidence from China," Sustainability, MDPI, vol. 8(12), pages 1-16, December.
    27. Luo, Xiao & Dong, Liang & Dou, Yi & Li, Yan & Liu, Kai & Ren, Jingzheng & Liang, Hanwei & Mai, Xianmin, 2017. "Factor decomposition analysis and causal mechanism investigation on urban transport CO2 emissions: Comparative study on Shanghai and Tokyo," Energy Policy, Elsevier, vol. 107(C), pages 658-668.
    28. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    29. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    30. Hu, Xiaojun & Chang, Shiyan & Li, Jingjie & Qin, Yining, 2010. "Energy for sustainable road transportation in China: Challenges, initiatives and policy implications," Energy, Elsevier, vol. 35(11), pages 4289-4301.
    31. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    32. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    33. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    34. Brand, Christian & Cluzel, Celine & Anable, Jillian, 2017. "Modeling the uptake of plug-in vehicles in a heterogeneous car market using a consumer segmentation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 121-136.
    35. Yang, Hai & Huang, Hai-Jun, 1999. "Carpooling and congestion pricing in a multilane highway with high-occupancy-vehicle lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 139-155, February.
    36. Zhang, Ming & Mu, Hailin & Li, Gang & Ning, Yadong, 2009. "Forecasting the transport energy demand based on PLSR method in China," Energy, Elsevier, vol. 34(9), pages 1396-1400.
    37. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    38. Wang, Haikun & Fu, Lixin & Bi, Jun, 2011. "CO2 and pollutant emissions from passenger cars in China," Energy Policy, Elsevier, vol. 39(5), pages 3005-3011, May.
    39. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    40. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    41. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    42. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    43. Wolfram, Paul & Wiedmann, Thomas, 2017. "Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity," Applied Energy, Elsevier, vol. 206(C), pages 531-540.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    2. Guo, Bin & Geng, Yong & Franke, Bernd & Hao, Han & Liu, Yaxuan & Chiu, Anthony, 2014. "Uncovering China’s transport CO2 emission patterns at the regional level," Energy Policy, Elsevier, vol. 74(C), pages 134-146.
    3. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
    4. Liu, Yang & Wang, Yu & Huo, Hong, 2013. "Temporal and spatial variations in on-road energy use and CO2 emissions in China, 1978–2008," Energy Policy, Elsevier, vol. 61(C), pages 544-550.
    5. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    6. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    7. Jialin Liu & Yi Zhu & Qun Zhang & Fangyan Cheng & Xi Hu & Xinhong Cui & Lang Zhang & Zhenglin Sun, 2020. "Transportation Carbon Emissions from a Perspective of Sustainable Development in Major Cities of Yangtze River Delta, China," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    8. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    9. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    10. Linna Li, 2019. "Structure and influencing factors of CO2 emissions from transport sector in three major metropolitan regions of China: estimation and decomposition," Transportation, Springer, vol. 46(4), pages 1245-1269, August.
    11. Luo, Xiao & Dong, Liang & Dou, Yi & Liang, Hanwei & Ren, Jingzheng & Fang, Kai, 2016. "Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges," Journal of Transport Geography, Elsevier, vol. 56(C), pages 1-14.
    12. Wang, Y.F. & Li, K.P. & Xu, X.M. & Zhang, Y.R., 2014. "Transport energy consumption and saving in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 641-655.
    13. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    14. Lilis Yuaningsih & R. Adjeng Mariana Febrianti & Munawar Javed Ahmad, 2021. "Examining the Factors Affecting CO2 Emissions from Road Transportation in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 152-159.
    15. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    16. Huali Sun & Mengzhen Li & Yaofeng Xue, 2019. "Examining the Factors Influencing Transport Sector CO 2 Emissions and Their Efficiency in Central China," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    17. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    18. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.
    19. Isik, Mine & Sarica, Kemal & Ari, Izzet, 2020. "Driving forces of Turkey's transportation sector CO2 emissions: An LMDI approach," Transport Policy, Elsevier, vol. 97(C), pages 210-219.
    20. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:820-842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.