IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp1016-1025.html
   My bibliography  Save this article

Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets

Author

Listed:
  • Zeng, Yuan
  • Tan, Xianchun
  • Gu, Baihe
  • Wang, Yi
  • Xu, Baoguang

Abstract

Along with rapid development of economy, urbanization and industrialization in China, the transportation sector especially road transport accounts for the quickest growth of energy consumption and greenhouse gas (GHG) emissions across the country. This paper selects four representative cities (Beijing, Shanghai, Guangzhou, and Chongqing) in the north, east, south, and west of China as targets of case study. It predicts future motor vehicle population in various cities using the Gompertz Model, and predicts and analyzes fuel consumption and GHG emissions of different types of motor vehicles in the case cities by 2035. The results indicate that besides gasoline and diesel, in the future uses of various types of vehicle fuels will follow different patterns among these four cities due to diverse resources endowment, economic strength, technology levels and geographical features. Based on predicted vehicle population and fuel consumption, it is found that from 2013 to 2035, GHG emissions from tank to wheel (TTW) and well to wheel (WTW) in all cities will continuously increase yet at different rates. If there is no interference from new policies, around 2020 Chongqing is expected to replace Beijing as the city with the highest volume of GHG emissions of vehicles among four case study cities. Therefore, the four cities especially Chongqing need urgently to develop or adjust low-carbon policies in road transportation sector, in order to achieve China’s future greenhouse gas reduction targets. Some policy implications to reduce GHG emissions of the road transportation sectors of the case cities are suggested based on the analysis results.

Suggested Citation

  • Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1016-1025
    DOI: 10.1016/j.apenergy.2016.06.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916309059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peterson, Meghan B. & Barter, Garrett E. & West, Todd H. & Manley, Dawn K., 2014. "A parametric study of light-duty natural gas vehicle competitiveness in the United States through 2050," Applied Energy, Elsevier, vol. 125(C), pages 206-217.
    2. Bauer, Mariano & Mar, Elizabeth & Elizalde, Alberto, 2003. "Transport and energy demand in Mexico: the personal income shock," Energy Policy, Elsevier, vol. 31(14), pages 1475-1480, November.
    3. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.
    4. Zhang, Chuanguo & Zhao, Wei, 2014. "Panel estimation for income inequality and CO2 emissions: A regional analysis in China," Applied Energy, Elsevier, vol. 136(C), pages 382-392.
    5. Tian Wu & Hongmei Zhao & Xunmin Ou, 2014. "Vehicle Ownership Analysis Based on GDP per Capita in China: 1963–2050," Sustainability, MDPI, vol. 6(8), pages 1-23, August.
    6. Bartolozzi, I. & Rizzi, F. & Frey, M., 2013. "Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy," Applied Energy, Elsevier, vol. 101(C), pages 103-111.
    7. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    8. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    9. Bielaczyc, Piotr & Woodburn, Joseph & Szczotka, Andrzej, 2014. "An assessment of regulated emissions and CO2 emissions from a European light-duty CNG-fueled vehicle in the context of Euro 6 emissions regulations," Applied Energy, Elsevier, vol. 117(C), pages 134-141.
    10. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    11. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    12. Meyer, Ina & Kaniovski, Serguei & Scheffran, Jürgen, 2012. "Scenarios for regional passenger car fleets and their CO2 emissions," Energy Policy, Elsevier, vol. 41(C), pages 66-74.
    13. Wang, Hewu & Zhang, Xiaobin & Ouyang, Minggao, 2015. "Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing," Applied Energy, Elsevier, vol. 157(C), pages 710-719.
    14. Dargay, Joyce & Gately, Dermot, 1999. "Income's effect on car and vehicle ownership, worldwide: 1960-2015," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 101-138, February.
    15. Huo, Hong & Wang, Michael & Zhang, Xiliang & He, Kebin & Gong, Huiming & Jiang, Kejun & Jin, Yuefu & Shi, Yaodong & Yu, Xin, 2012. "Projection of energy use and greenhouse gas emissions by motor vehicles in China: Policy options and impacts," Energy Policy, Elsevier, vol. 43(C), pages 37-48.
    16. Huo, Hong & Zhang, Qiang & He, Kebin & Yao, Zhiliang & Wang, Michael, 2012. "Vehicle-use intensity in China: Current status and future trend," Energy Policy, Elsevier, vol. 43(C), pages 6-16.
    17. Kudoh, Yuki & Kondo, Yoshinori & Matsuhashi, Keisuke & Kobayashi, Shinji & Moriguchi, Yuichi, 2004. "Current status of actual fuel-consumptions of petrol-fuelled passenger vehicles in Japan," Applied Energy, Elsevier, vol. 79(3), pages 291-308, November.
    18. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    19. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    20. Zhao, Xin & Doering, Otto C. & Tyner, Wallace E., 2015. "The economic competitiveness and emissions of battery electric vehicles in China," Applied Energy, Elsevier, vol. 156(C), pages 666-675.
    21. López, José M & Gómez, Álvaro & Aparicio, Francisco & Javier Sánchez, Fco., 2009. "Comparison of GHG emissions from diesel, biodiesel and natural gas refuse trucks of the City of Madrid," Applied Energy, Elsevier, vol. 86(5), pages 610-615, May.
    22. Ou, Xunmin & Yan, Xiaoyu & Zhang, Xiliang & Liu, Zhen, 2012. "Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China," Applied Energy, Elsevier, vol. 90(1), pages 218-224.
    23. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    24. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    25. Chung, William & Zhou, Guanghui & Yeung, Iris M.H., 2013. "A study of energy efficiency of transport sector in China from 2003 to 2009," Applied Energy, Elsevier, vol. 112(C), pages 1066-1077.
    26. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Comparison of policies on vehicle ownership and use between Beijing and Shanghai and their impacts on fuel consumption by passenger vehicles," Energy Policy, Elsevier, vol. 39(2), pages 1016-1021, February.
    27. Akkemik, K. Ali & Göksal, Koray & Li, Jia, 2012. "Energy consumption and income in Chinese provinces: Heterogeneous panel causality analysis," Applied Energy, Elsevier, vol. 99(C), pages 445-454.
    28. Zhou, Nan & Fridley, David & Khanna, Nina Zheng & Ke, Jing & McNeil, Michael & Levine, Mark, 2013. "China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model," Energy Policy, Elsevier, vol. 53(C), pages 51-62.
    29. Zhang, Ming & Mu, Hailin & Li, Gang & Ning, Yadong, 2009. "Forecasting the transport energy demand based on PLSR method in China," Energy, Elsevier, vol. 34(9), pages 1396-1400.
    30. Huo, Hong & Wang, Michael, 2012. "Modeling future vehicle sales and stock in China," Energy Policy, Elsevier, vol. 43(C), pages 17-29.
    31. Arteconi, A. & Brandoni, C. & Evangelista, D. & Polonara, F., 2010. "Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe," Applied Energy, Elsevier, vol. 87(6), pages 2005-2013, June.
    32. Huo, Hong & He, Kebin & Wang, Michael & Yao, Zhiliang, 2012. "Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles," Energy Policy, Elsevier, vol. 43(C), pages 30-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jani Das, 2022. "Comparative life cycle GHG emission analysis of conventional and electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13294-13333, November.
    2. Haoxuan Hu & Yuchen Zhang & Xi Rao & Yinghua Jin, 2021. "Impact of Technology Innovation on Air Quality—An Empirical Study on New Energy Vehicles in China," IJERPH, MDPI, vol. 18(8), pages 1-13, April.
    3. Chen, Guangwu & Wiedmann, Thomas & Wang, Yafei & Hadjikakou, Michalis, 2016. "Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1082-1092.
    4. Lin Ma & Manhua Wu & Xiujuan Tian & Guanheng Zheng & Qinchuan Du & Tian Wu, 2019. "China’s Provincial Vehicle Ownership Forecast and Analysis of the Causes Influencing the Trend," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    5. Wen, Yifan & Zhang, Shaojun & Zhang, Jingran & Bao, Shuanghui & Wu, Xiaomeng & Yang, Daoyuan & Wu, Ye, 2020. "Mapping dynamic road emissions for a megacity by using open-access traffic congestion index data," Applied Energy, Elsevier, vol. 260(C).
    6. Wen, Yifan & Wu, Ruoxi & Zhou, Zihang & Zhang, Shaojun & Yang, Shengge & Wallington, Timothy J. & Shen, Wei & Tan, Qinwen & Deng, Ye & Wu, Ye, 2022. "A data-driven method of traffic emissions mapping with land use random forest models," Applied Energy, Elsevier, vol. 305(C).
    7. Fengying Yan & Ningyu Huang & Yehui Zhang, 2022. "How Can the Layout of Public Service Facilities Be Optimized to Reduce Travel-Related Carbon Emissions? Evidence from Changxing County, China," Land, MDPI, vol. 11(8), pages 1-24, July.
    8. Lian Lian & Wen Tian & Hongfeng Xu & Menglan Zheng, 2018. "Modeling and Forecasting Passenger Car Ownership Based on Symbolic Regression," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    9. Jing Gan & Linheng Li & Qiaojun Xiang & Bin Ran, 2020. "A Prediction Method of GHG Emissions for Urban Road Transportation Planning and Its Applications," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    10. Xin Dai & Tianshan Ma & Enyi Zhou, 2023. "New Energy Commuting Optimization under Low-Carbon Orientation: A Case Study of Xi’an Metropolitan Area," Energies, MDPI, vol. 16(23), pages 1-17, December.
    11. Cicconi, Paolo & Landi, Daniele & Germani, Michele, 2017. "Thermal analysis and simulation of a Li-ion battery pack for a lightweight commercial EV," Applied Energy, Elsevier, vol. 192(C), pages 159-177.
    12. Li, Linheng & Wang, Can & Zhang, Ying & Qu, Xu & Li, Rui & Chen, Zhijun & Ran, Bin, 2022. "Microscopic state evolution model of mixed traffic flow based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Rodrigo Galbieri & Thiago Luis Felipe Brito & Dominique Mouette & Hirdan Katarina Medeiros Costa & Edmilson Moutinho dos Santos & Murilo Tadeu Werneck Fagá, 2018. "Bus fleet emissions: new strategies for mitigation by adopting natural gas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1039-1062, October.
    14. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    15. Xianchun Tan & Tangqi Tu & Baihe Gu & Yuan Zeng & Tianhang Huang & Qianqian Zhang, 2021. "Assessing CO 2 Emissions from Passenger Transport with the Mixed-Use Development Model in Shenzhen International Low-Carbon City," Land, MDPI, vol. 10(2), pages 1-19, February.
    16. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
    17. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2022. "Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong," Research in Transportation Economics, Elsevier, vol. 91(C).
    18. Yu, Liukai & Zheng, Junjun & Ma, Gang & Jiao, Yangyang, 2023. "Analyzing the evolution trend of energy conservation and carbon reduction in transportation with promoting electrification in China," Energy, Elsevier, vol. 263(PD).
    19. Ma, Junhai & Hou, Yaming & Yang, Wenhui & Tian, Yi, 2020. "A time-based pricing game in a competitive vehicle market regarding the intervention of carbon emission reduction," Energy Policy, Elsevier, vol. 142(C).
    20. Marlen Fonseca Vigoya & Jos Garc a Mendoza & Sofia Orjuela Abril, 2020. "International Energy Transition: A Review of its Status on Several Continents," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 216-224.
    21. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
    22. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    2. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    3. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
    4. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    5. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    6. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    7. Liu, Yang & Wang, Yu & Huo, Hong, 2013. "Temporal and spatial variations in on-road energy use and CO2 emissions in China, 1978–2008," Energy Policy, Elsevier, vol. 61(C), pages 544-550.
    8. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    10. Li, Weiqi & Dai, Yaping & Ma, Linwei & Hao, Han & Lu, Haiyan & Albinson, Rosemary & Li, Zheng, 2015. "Oil-saving pathways until 2030 for road freight transportation in China based on a cost-optimization model," Energy, Elsevier, vol. 86(C), pages 369-384.
    11. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    12. Lin Ma & Manhua Wu & Xiujuan Tian & Guanheng Zheng & Qinchuan Du & Tian Wu, 2019. "China’s Provincial Vehicle Ownership Forecast and Analysis of the Causes Influencing the Trend," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    13. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    14. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2013. "Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development," Energy Policy, Elsevier, vol. 58(C), pages 347-357.
    15. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2012. "Fuel consumption and life cycle GHG emissions by China’s on-road trucks: Future trends through 2050 and evaluation of mitigation measures," Energy Policy, Elsevier, vol. 43(C), pages 244-251.
    16. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    17. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    18. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet," Energy, Elsevier, vol. 36(11), pages 6520-6528.
    19. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Yang, Liuhanzi & Li, Zhenhua & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 emissions of urban public buses in Beijing," Applied Energy, Elsevier, vol. 113(C), pages 1645-1655.
    20. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1016-1025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.