IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v284y2021ics030626192031655x.html
   My bibliography  Save this article

Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies

Author

Listed:
  • Bu, Chujie
  • Cui, Xueqin
  • Li, Ruiyao
  • Li, Jin
  • Zhang, Yaxin
  • Wang, Can
  • Cai, Wenjia

Abstract

As a major GHG emissions source with large growth potential, the passenger transport sector plays a crucial role in deep decarbonization in China. Large disparities among provinces in private vehicle ownership, sufficiency of public transport infrastructure, affordability of clean fuel vehicles, etc. highlight the importance of regionally tailored mitigation strategies to fully exploit carbon reduction potentials. We classify 31 provinces in mainland China into three regional clusters based on their passenger transport development level, then establish a provincial level bottom-up model to project energy demand and CO2 emissions of China’s passenger transport sector by 2050. Mitigation effects of improving vehicle energy efficiency, shifting to alternative clean fuels, and promoting public transport are compared, and regionally tailored policy priorities are then proposed. The results show that CO2 emissions of China's passenger transport sector will peak around 2045 at 647 MtCO2 and slightly declined to 642 MtCO2 in 2050 in the Current Policies Scenario. If fully implemented, regionally tailor mitigation strategies that maximize techno-economic carbon reduction potentials could cut CO2 emissions substantially to net-zero in 2050. Mitigation effects of different policy options vary among time periods and regions. Improving vehicle fuel efficiency contributes the most in carbon mitigation over short time scales especially in less developed provinces, where private vehicle ownerships are projected to increase rapidly. Well-established transport infrastructure and an optimally designed public transport system could play a larger role in wealthier provinces.

Suggested Citation

  • Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:appene:v:284:y:2021:i:c:s030626192031655x
    DOI: 10.1016/j.apenergy.2020.116265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192031655X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brand, Christian & Boardman, Brenda, 2008. "Taming of the few--The unequal distribution of greenhouse gas emissions from personal travel in the UK," Energy Policy, Elsevier, vol. 36(1), pages 224-238, January.
    2. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    3. Liu, Changqing & Li, Lei, 2020. "How do subways affect urban passenger transport modes?—Evidence from China," Economics of Transportation, Elsevier, vol. 23(C).
    4. Rietveld, Piet, 1994. "Spatial economic impacts of transport infrastructure supply," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(4), pages 329-341, July.
    5. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    6. Hao, Han & Geng, Yong & Li, Weiqi & Guo, Bin, 2015. "Energy consumption and GHG emissions from China's freight transport sector: Scenarios through 2050," Energy Policy, Elsevier, vol. 85(C), pages 94-101.
    7. Alexandre Milovanoff & I. Daniel Posen & Heather L. MacLean, 2020. "Electrification of light-duty vehicle fleet alone will not meet mitigation targets," Nature Climate Change, Nature, vol. 10(12), pages 1102-1107, December.
    8. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    9. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    10. Andreas W. Schäfer & Sonia Yeh, 2020. "A holistic analysis of passenger travel energy and greenhouse gas intensities," Nature Sustainability, Nature, vol. 3(6), pages 459-462, June.
    11. Song, Yan & Zhang, Ming & Shan, Cheng, 2019. "Research on the decoupling trend and mitigation potential of CO2 emissions from China's transport sector," Energy, Elsevier, vol. 183(C), pages 837-843.
    12. Robinson, John Bridger, 1982. "Energy backcasting A proposed method of policy analysis," Energy Policy, Elsevier, vol. 10(4), pages 337-344, December.
    13. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    14. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    15. Wanmin Liu & Qilong Liu & Lv Xu & Mulan Qin & Jiyong Deng, 2019. "A Zero-Emission Electroless Nickel Plating Bath," Surface Review and Letters (SRL), World Scientific Publishing Co. Pte. Ltd., vol. 26(01), pages 1-5, January.
    16. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    17. Cui, Can & Shan, Yuli & Liu, Jianghua & Yu, Xiang & Wang, Hongtao & Wang, Zhen, 2019. "CO2 emissions and their spatial patterns of Xinjiang cities in China," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    19. Huo, Hong & Wang, Michael, 2012. "Modeling future vehicle sales and stock in China," Energy Policy, Elsevier, vol. 43(C), pages 17-29.
    20. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    21. Hu, Guangxiao & Ma, Xiaoming & Ji, Junping, 2019. "Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China," Applied Energy, Elsevier, vol. 238(C), pages 876-886.
    22. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    23. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    24. Zhou, Nan & Price, Lynn & Yande, Dai & Creyts, Jon & Khanna, Nina & Fridley, David & Lu, Hongyou & Feng, Wei & Liu, Xu & Hasanbeigi, Ali & Tian, Zhiyu & Yang, Hongwei & Bai, Quan & Zhu, Yuezhong & Xio, 2019. "A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030," Applied Energy, Elsevier, vol. 239(C), pages 793-819.
    25. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    26. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    27. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    28. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
    29. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    30. Litman, Todd, 2007. "Evaluating rail transit benefits: A comment," Transport Policy, Elsevier, vol. 14(1), pages 94-97, January.
    31. Loo, Becky P.Y. & Li, Linna, 2012. "Carbon dioxide emissions from passenger transport in China since 1949: Implications for developing sustainable transport," Energy Policy, Elsevier, vol. 50(C), pages 464-476.
    32. Florian Knobloch & Steef V. Hanssen & Aileen Lam & Hector Pollitt & Pablo Salas & Unnada Chewpreecha & Mark A. J. Huijbregts & Jean-Francois Mercure, 2020. "Net emission reductions from electric cars and heat pumps in 59 world regions over time," Nature Sustainability, Nature, vol. 3(6), pages 437-447, June.
    33. Yaping Dong & Jinliang Xu & Xingliang Liu & Chao Gao & Han Ru & Zhihao Duan, 2019. "Carbon Emissions and Expressway Traffic Flow Patterns in China," Sustainability, MDPI, vol. 11(10), pages 1-12, May.
    34. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    35. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Linfei & Wu, Yunzhi, 2022. "Mode-decomposition memory reinforcement network strategy for smart generation control in multi-area power systems containing renewable energy," Applied Energy, Elsevier, vol. 307(C).
    2. Li, Yapeng & Wang, Feng & Tang, Xiaolin & Hu, Xiaosong & Lin, Xianke, 2022. "Convex optimization-based predictive and bi-level energy management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 257(C).
    3. Jinru Wang & Zhenwu Shi & Jie Liu & Hongrui Zhang, 2023. "Promoting “NEVs Pilot Policy” as an Effective Way for Reducing Urban Transport Carbon Emissions: Empirical Evidence from China," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    4. Xianen Wang & Baoyang Qin & Hanning Wang & Xize Dong & Haiyan Duan, 2022. "Carbon Mitigation Pathways of Urban Transportation under Cold Climatic Conditions," IJERPH, MDPI, vol. 19(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    2. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    3. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    4. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    5. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    6. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    8. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    9. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
    10. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    11. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    13. Sun, Dexi & Xia, Jianjun, 2023. "Research on road transport planning aiming at near zero carbon emissions: Taking Ruicheng County as an example," Energy, Elsevier, vol. 263(PB).
    14. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    15. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    16. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    17. Ziru Feng & Tian Cai & Kangli Xiang & Chenxi Xiang & Lei Hou, 2019. "Evaluating the Impact of Fossil Fuel Vehicle Exit on the Oil Demand in China," Energies, MDPI, vol. 12(14), pages 1-18, July.
    18. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    19. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    20. Li, Bo & Ma, Ziming & Hidalgo-Gonzalez, Patricia & Lathem, Alex & Fedorova, Natalie & He, Gang & Zhong, Haiwang & Chen, Minyou & Kammen, Daniel M., 2021. "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors," Energy Policy, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:284:y:2021:i:c:s030626192031655x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.