IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v133y2019ics0301421519304914.html
   My bibliography  Save this article

Peaking CO2 emissions for China's urban passenger transport sector

Author

Listed:
  • Li, Xi
  • Yu, Biying

Abstract

Due to economic development and urbanization, the number of car ownership continues to increase, making the urban passenger transport sector becoming an important contributor for energy consumption and CO2 emissions in China (accounting for around 20% of the total carbon emissions of the transport sector in 2016). Hence, how the urban passenger transport sector can contribute to peaking China's carbon dioxide emissions by 2030 is worthy of attention. To that end, we develop a National Energy Technology-Transport (NET-Transport) model to assess the impacts of shifting to alternative clean fuels, improving vehicle fuel efficiency, and promoting public transportation on the future energy demand and CO2 emissions for China's urban passenger transport sector. The results show that in the context of promoting the use of clean fuel vehicles and increasing vehicle fuel efficiency, CO2 emissions of China's urban passenger transport sector could reach a peak of 225 MtCO2 in 2030. If the mode share of public transport could further increase, the CO2 emissions from the urban passenger transport sector in China are possible to peak at around 2020 with the emissions ranging from 171 to 214 MtCO2.

Suggested Citation

  • Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:enepol:v:133:y:2019:i:c:s0301421519304914
    DOI: 10.1016/j.enpol.2019.110913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519304914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.110913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    2. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    3. Hao, Han & Geng, Yong & Li, Weiqi & Guo, Bin, 2015. "Energy consumption and GHG emissions from China's freight transport sector: Scenarios through 2050," Energy Policy, Elsevier, vol. 85(C), pages 94-101.
    4. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    5. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
    6. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    7. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    8. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    9. Yuan, Jiahai & Xu, Yan & Hu, Zheng & Zhao, Changhong & Xiong, Minpeng & Guo, Jingsheng, 2014. "Peak energy consumption and CO2 emissions in China," Energy Policy, Elsevier, vol. 68(C), pages 508-523.
    10. Yi-Ming Wei & Rong Han & Qiao-Mei Liang & Bi-Ying Yu & Yun-Fei Yao & Mei-Mei Xue & Kun Zhang & Li-Jing Liu & Juan Peng & Pu Yang & Zhi-Fu Mi & Yun-Fei Du & Ce Wang & Jun-Jie Chang & Qian-Ru Yang & Zil, 2018. "An integrated assessment of INDCs under Shared Socioeconomic Pathways: an implementation of C3IAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 585-618, June.
    11. Zhou, Nan & Fridley, David & Khanna, Nina Zheng & Ke, Jing & McNeil, Michael & Levine, Mark, 2013. "China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model," Energy Policy, Elsevier, vol. 53(C), pages 51-62.
    12. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    13. AfDB AfDB, . "Annual Report 2012," Annual Report, African Development Bank, number 461.
    14. Tang, Baojun & Li, Ru & Yu, Biying & An, Runying & Wei, Yi-Ming, 2018. "How to peak carbon emissions in China's power sector: A regional perspective," Energy Policy, Elsevier, vol. 120(C), pages 365-381.
    15. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    16. Chen, Jing-Ming & Yu, Biying & Wei, Yi-Ming, 2018. "Energy technology roadmap for ethylene industry in China," Applied Energy, Elsevier, vol. 224(C), pages 160-174.
    17. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    18. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    19. Wu, Lifeng & Liu, Sifeng & Liu, Dinglin & Fang, Zhigeng & Xu, Haiyan, 2015. "Modelling and forecasting CO2 emissions in the BRICS (Brazil, Russia, India, China, and South Africa) countries using a novel multi-variable grey model," Energy, Elsevier, vol. 79(C), pages 489-495.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Andrade de Carvalho & André de Castro & Gutemberg Hespanha Brasil & Paulo Antonio de Souza & Andrés Z. Mendiburu, 2022. "CO 2 Emission Factors and Carbon Losses for Off-Road Mining Trucks," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Sui, Yi & Zhang, Haoran & Shang, Wenlong & Sun, Rencheng & Wang, Changying & Ji, Jun & Song, Xuan & Shao, Fengjing, 2020. "Mining urban sustainable performance: Spatio-temporal emission potential changes of urban transit buses in post-COVID-19 future," Applied Energy, Elsevier, vol. 280(C).
    3. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    4. Na Zhang & Zijia Wang & Feng Chen & Jingni Song & Jianpo Wang & Yu Li, 2020. "Low-Carbon Impact of Urban Rail Transit Based on Passenger Demand Forecast in Baoji," Energies, MDPI, vol. 13(4), pages 1-18, February.
    5. Chi, Yuanying & Xu, Weiyue & Xiao, Meng & Wang, Zhengzao & Zhang, Xufeng & Chen, Yahui, 2023. "Fuel-cycle based environmental and economic assessment of hydrogen fuel cell vehicles in China," Energy, Elsevier, vol. 282(C).
    6. Yu, Biying & Zhao, Zihao & Zhang, Shuai & An, Runying & Chen, Jingming & Li, Ru & Zhao, Guangpu, 2021. "Technological development pathway for a low-carbon primary aluminum industry in China," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Renjie Wang & Yuanyuan Song & Honglei Xu & Yue Li & Jie Liu, 2022. "Life Cycle Assessment of Energy Consumption and CO 2 Emission from HEV, PHEV and BEV for China in the Past, Present and Future," Energies, MDPI, vol. 15(18), pages 1-16, September.
    8. Xianchun Tan & Tangqi Tu & Baihe Gu & Yuan Zeng & Tianhang Huang & Qianqian Zhang, 2021. "Assessing CO 2 Emissions from Passenger Transport with the Mixed-Use Development Model in Shenzhen International Low-Carbon City," Land, MDPI, vol. 10(2), pages 1-19, February.
    9. Maksymilian Mądziel & Tiziana Campisi, 2023. "Investigation of Vehicular Pollutant Emissions at 4-Arm Intersections for the Improvement of Integrated Actions in the Sustainable Urban Mobility Plans (SUMPs)," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    10. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    11. Cui, Yin & Li, Zhiyong & Sun, Yu & Sun, Weizheng, 2023. "Environmental performance of an urban passenger transport system and influencing factors: A case study of Tianjin, China," Utilities Policy, Elsevier, vol. 80(C).
    12. Xianen Wang & Baoyang Qin & Hanning Wang & Xize Dong & Haiyan Duan, 2022. "Carbon Mitigation Pathways of Urban Transportation under Cold Climatic Conditions," IJERPH, MDPI, vol. 19(8), pages 1-16, April.
    13. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels," Energies, MDPI, vol. 14(5), pages 1-33, March.
    14. Meina Zheng & Xiucheng Guo & Feng Liu & Jiayan Shen, 2021. "Contribution of Subway Expansions to Air Quality Improvement and the Corresponding Health Implications in Nanjing, China," IJERPH, MDPI, vol. 18(3), pages 1-19, January.
    15. Zhao, Jinyang & Yu, Yadong & Ren, Hongtao & Makowski, Marek & Granat, Janusz & Nahorski, Zbigniew & Ma, Tieju, 2022. "How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?," Energy, Elsevier, vol. 261(PA).
    16. Roberto Ivo da Rocha Lima Filho & Thereza Cristina Nogueira de Aquino & Adriano Marçal Nogueira Neto, 2021. "Fuel price control in Brazil: environmental impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9811-9826, July.
    17. Murat Peksen, 2021. "Hydrogen Technology towards the Solution of Environment-Friendly New Energy Vehicles," Energies, MDPI, vol. 14(16), pages 1-6, August.
    18. Xinru Han & Yongfu Chen & Xiudong Wang, 2022. "Impacts of China’s bioethanol policy on the global maize market: a partial equilibrium analysis to 2030," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(1), pages 147-163, February.
    19. Qin-Lei Jing & Han-Zhen Liu & Wei-Qing Yu & Xu He, 2022. "The Impact of Public Transportation on Carbon Emissions—From the Perspective of Energy Consumption," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    20. Yanming Sun & Shixian Liu & Lei Li, 2022. "Grey Correlation Analysis of Transportation Carbon Emissions under the Background of Carbon Peak and Carbon Neutrality," Energies, MDPI, vol. 15(9), pages 1-24, April.
    21. Yao, Zhihong & Wang, Yi & Liu, Bo & Zhao, Bin & Jiang, Yangsheng, 2021. "Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway," Energy, Elsevier, vol. 230(C).
    22. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    23. Li, Bo & Ma, Ziming & Hidalgo-Gonzalez, Patricia & Lathem, Alex & Fedorova, Natalie & He, Gang & Zhong, Haiwang & Chen, Minyou & Kammen, Daniel M., 2021. "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors," Energy Policy, Elsevier, vol. 149(C).
    24. Guoli Xu & Cora Un In Wong & Xintong Xu, 2023. "A Comprehensive Evaluation and Empirical Research on Dual Carbon Emission Reduction under Digital Empowerment," Sustainability, MDPI, vol. 15(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    2. Tang, Bao-Jun & Li, Xiao-Yi & Yu, Biying & Wei, Yi-Ming, 2019. "Sustainable development pathway for intercity passenger transport: A case study of China," Applied Energy, Elsevier, vol. 254(C).
    3. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
    5. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    6. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    7. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    8. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    9. Rauf, Abdul & Zhang, Jin & Li, Jinkai & Amin, Waqas, 2018. "Structural changes, energy consumption and carbon emissions in China: Empirical evidence from ARDL bound testing model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 194-206.
    10. Biying Yu & Guangpu Zhao & Runying An, 2019. "Framing the picture of energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1469-1490, December.
    11. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    12. Jing-Ming Chen & Biying Yu & Yi-Ming Wei, 2019. "CO2 emissions accounting for the chemical industry: an empirical analysis for China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1327-1343, December.
    13. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    14. Niu, Shuwen & Liu, Yiyue & Ding, Yongxia & Qu, Wei, 2016. "China׳s energy systems transformation and emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 782-795.
    15. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    16. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    17. Mu, Yaqian & Wang, Can & Cai, Wenjia, 2018. "The economic impact of China's INDC: Distinguishing the roles of the renewable energy quota and the carbon market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2955-2966.
    18. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    19. Wu, Tian & Wang, Shouyang & Wang, Lining & Tang, Xiao, 2022. "Contribution of China's online car-hailing services to its 2050 carbon target: Energy consumption assessment based on the GCAM-SE model," Energy Policy, Elsevier, vol. 160(C).
    20. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:133:y:2019:i:c:s0301421519304914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.