IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i2p658-668.html
   My bibliography  Save this article

Reduction potentials of energy demand and GHG emissions in China's road transport sector

Author

Listed:
  • Yan, Xiaoyu
  • Crookes, Roy J.

Abstract

Rapid growth of road vehicles, private vehicles in particular, has resulted in continuing growth in China's oil demand and imports, which has been widely accepted as a major factor effecting future oil availability and prices, and a major contributor to China's GHG emission increase. This paper is intended to analyze the future trends of energy demand and GHG emissions in China's road transport sector and to assess the effectiveness of possible reduction measures. A detailed model has been developed to derive a reliable historical trend of energy demand and GHG emissions in China's road transport sector between 2000 and 2005 and to project future trends. Two scenarios have been designed to describe the future strategies relating to the development of China's road transport sector. The 'Business as Usual' scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of road transport energy demand. The 'Best Case' scenario is considered to be the most optimized case where a series of available reduction measures such as private vehicle control, fuel economy regulation, promoting diesel and gas vehicles, fuel tax and biofuel promotion, are assumed to be implemented. Energy demand and GHG emissions in China's road transport sector up to 2030 are estimated in these two scenarios. The total reduction potentials in the 'Best Case' scenario and the relative reduction potentials of each measure have been estimated.

Suggested Citation

  • Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:658-668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00586-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    2. Turrentine, Thomas S. & Kurani, Kenneth S., 2007. "Car buyers and fuel economy?," Energy Policy, Elsevier, vol. 35(2), pages 1213-1223, February.
    3. Cameron, I. & Lyons, T. J. & Kenworthy, J. R., 2004. "Trends in vehicle kilometres of travel in world cities, 1960-1990: underlying drivers and policy responses," Transport Policy, Elsevier, vol. 11(3), pages 287-298, July.
    4. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    5. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    6. Litman, Todd, 2005. "Efficient vehicles versus efficient transportation. Comparing transportation energy conservation strategies," Transport Policy, Elsevier, vol. 12(2), pages 121-129, March.
    7. Dargay, Joyce, 2007. "The effect of prices and income on car travel in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 949-960, December.
    8. Herring, Horace, 2006. "Energy efficiency—a critical view," Energy, Elsevier, vol. 31(1), pages 10-20.
    9. Zhao, Jimin & Melaina, Marc W., 2006. "Transition to hydrogen-based transportation in China: Lessons learned from alternative fuel vehicle programs in the United States and China," Energy Policy, Elsevier, vol. 34(11), pages 1299-1309, July.
    10. Sterner, Thomas, 2007. "Fuel taxes: An important instrument for climate policy," Energy Policy, Elsevier, vol. 35(6), pages 3194-3202, June.
    11. Zhao, Xingjun & Wu, Yanrui, 2007. "Determinants of China's energy imports: An empirical analysis," Energy Policy, Elsevier, vol. 35(8), pages 4235-4246, August.
    12. Schafer, Andreas, 1998. "The global demand for motorized mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(6), pages 455-477, August.
    13. Roy, Joyashree, 2000. "The rebound effect: some empirical evidence from India," Energy Policy, Elsevier, vol. 28(6-7), pages 433-438, June.
    14. Wohlgemuth, Norbert, 1997. "World transport energy demand modelling : Methodology and elasticities," Energy Policy, Elsevier, vol. 25(14-15), pages 1109-1119, December.
    15. Wang, GuoHong & Wang, YunXia & Zhao, Tao, 2008. "Analysis of interactions among the barriers to energy saving in China," Energy Policy, Elsevier, vol. 36(6), pages 1879-1889, June.
    16. Hung, Wing-Tat, 2006. "Taxation on vehicle fuels: its impacts on switching to cleaner fuels," Energy Policy, Elsevier, vol. 34(16), pages 2566-2571, November.
    17. Demirbas, Ayhan, 2007. "Importance of biodiesel as transportation fuel," Energy Policy, Elsevier, vol. 35(9), pages 4661-4670, September.
    18. Turrentine, Tom & Kurani, Kenneth S, 2007. "Car buyers and fuel economy?," Institute of Transportation Studies, Working Paper Series qt56x845v4, Institute of Transportation Studies, UC Davis.
    19. Michaelis, Laurie & Davidson, Ogunlade, 1996. "GHG mitigation in the transport sector," Energy Policy, Elsevier, vol. 24(10-11), pages 969-984.
    20. Lee Schipper & Céline Marie-Lilliu & Lew Fulton, 2002. "Diesels in Europe: Analysis of Characteristics, Usage Patterns, Energy Savings and CO 2 Emission Implications," Journal of Transport Economics and Policy, University of Bath, vol. 36(2), pages 305-340, May.
    21. Nel, Willem P. & Cooper, Christopher J., 2008. "A critical review of IEA's oil demand forecast for China," Energy Policy, Elsevier, vol. 36(3), pages 1096-1106, March.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:658-668. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.