IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v51y2012icp939-945.html
   My bibliography  Save this article

Carbon lock-in, rebound effects and China at the limits of statism

Author

Listed:
  • Karlsson, Rasmus

Abstract

From the beginning, the statist frame of the Kyoto Protocol has invited a focus on national carbon budgets and piecemeal mitigation within rich countries. Despite the Clean Development Mechanism and other efforts to diffuse low carbon technologies to developing countries, China has over the last decades continued to construct hundreds of new thermal coal power plants leading not only to skyrocketing emissions in the present but also to long-term carbon lock-in. In light of this, China is likely to continue to put strong upward pressure on global emissions for many decades to come. Ignoring the seriousness of this situation, many rich countries have persisted to seek marginal improvements to intermittent low-energy sources such as wind power rather than taking the lead in developing breakthrough baseload technologies such as nuclear fusion. This paper argues that only such high-energy technologies, if made significantly cheaper than any fossil alternatives, will be capable of breaking the current carbon lock-in process in China and other developing countries.

Suggested Citation

  • Karlsson, Rasmus, 2012. "Carbon lock-in, rebound effects and China at the limits of statism," Energy Policy, Elsevier, vol. 51(C), pages 939-945.
  • Handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:939-945
    DOI: 10.1016/j.enpol.2012.09.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512008403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.09.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Amiti, Mary & Smarzynska Javorcik, Beata, 2008. "Trade costs and location of foreign firms in China," Journal of Development Economics, Elsevier, vol. 85(1-2), pages 129-149, February.
    3. Saunders, Harry D., 2000. "A view from the macro side: rebound, backfire, and Khazzoom-Brookes," Energy Policy, Elsevier, vol. 28(6-7), pages 439-449, June.
    4. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    5. Wei, Taoyuan, 2010. "A general equilibrium view of global rebound effects," Energy Economics, Elsevier, vol. 32(3), pages 661-672, May.
    6. Schmidt, Robert C. & Marschinski, Robert, 2009. "A model of technological breakthrough in the renewable energy sector," Ecological Economics, Elsevier, vol. 69(2), pages 435-444, December.
    7. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    8. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    9. Peter Lindert, 2004. "Social Spending and Economic Growth," Challenge, Taylor & Francis Journals, vol. 47(4), pages 6-16.
    10. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
    11. Onno Kuik & Reyer Gerlagh, 2003. "Trade Liberalization and Carbon Leakage," The Energy Journal, , vol. 24(3), pages 97-120, July.
    12. Victor,David G., 2011. "Global Warming Gridlock," Cambridge Books, Cambridge University Press, number 9780521865012, September.
    13. Glomsrod, Solveig & Taoyuan, Wei, 2005. "Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China?," Energy Policy, Elsevier, vol. 33(4), pages 525-542, March.
    14. Yunfeng, Yan & Laike, Yang, 2010. "China's foreign trade and climate change: A case study of CO2 emissions," Energy Policy, Elsevier, vol. 38(1), pages 350-356, January.
    15. Nicholas R. Lardy, 2012. "Sustaining China's Economic Growth after the Global Financial Crisis," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 6260, April.
    16. Söderholm, Patrik & Ek, Kristina & Pettersson, Maria, 2007. "Wind power development in Sweden: Global policies and local obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 365-400, April.
    17. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2010. "The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model," Energy Policy, Elsevier, vol. 38(11), pages 6597-6603, November.
    18. Hu, Yu & Monroy, Carlos Rodríguez, 2012. "Chinese energy and climate policies after Durban: Save the Kyoto Protocol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3243-3250.
    19. Emma Lund, 2010. "Dysfunctional delegation: why the design of the CDM's supervisory system is fundamentally flawed," Climate Policy, Taylor & Francis Journals, vol. 10(3), pages 277-288, May.
    20. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    21. Zhao, Xiaoli & Ma, Chunbo & Hong, Dongyue, 2010. "Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis," Energy Policy, Elsevier, vol. 38(3), pages 1379-1388, March.
    22. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    23. Yuan, Jia-Hai & Kang, Jian-Gang & Zhao, Chang-Hong & Hu, Zhao-Guang, 2008. "Energy consumption and economic growth: Evidence from China at both aggregated and disaggregated levels," Energy Economics, Elsevier, vol. 30(6), pages 3077-3094, November.
    24. Unruh, Gregory C. & Carrillo-Hermosilla, Javier, 2006. "Globalizing carbon lock-in," Energy Policy, Elsevier, vol. 34(10), pages 1185-1197, July.
    25. Zhang, Xiaobo & Yang, Jin & Wang, Shenglin, 2011. "China has reached the Lewis turning point," China Economic Review, Elsevier, vol. 22(4), pages 542-554.
    26. Sterner, Thomas, 2007. "Fuel taxes: An important instrument for climate policy," Energy Policy, Elsevier, vol. 35(6), pages 3194-3202, June.
    27. Roy, Joyashree, 2000. "The rebound effect: some empirical evidence from India," Energy Policy, Elsevier, vol. 28(6-7), pages 433-438, June.
    28. Ng, Linda Fung-Yee & Tuan, Chyau, 2006. "Spatial agglomeration, FDI, and regional growth in China: Locality of local and foreign manufacturing investments," Journal of Asian Economics, Elsevier, vol. 17(4), pages 691-713, October.
    29. W. J.W. Botzen & J. M. Gowdy & J. C.J.M. Van Den Bergh, 2008. "Cumulative CO 2 emissions: shifting international responsibilities for climate debt," Climate Policy, Taylor & Francis Journals, vol. 8(6), pages 569-576, November.
    30. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    31. Isabel Galiana & Christopher Green, 2009. "Let the global technology race begin," Nature, Nature, vol. 462(7273), pages 570-571, December.
    32. Jay Mandle, 2008. "Reconciling Development, Global Climate Change, and Politics," Challenge, Taylor & Francis Journals, vol. 51(6), pages 81-90.
    33. Edmonds, James & Calvin, Katherine & Clarke, Leon & Kyle, Page & Wise, Marshall, 2012. "Energy and technology lessons since Rio," Energy Economics, Elsevier, vol. 34(S1), pages 7-14.
    34. Madeleine Heyward, 2007. "Equity and international climate change negotiations: a matter of perspective," Climate Policy, Taylor & Francis Journals, vol. 7(6), pages 518-534, November.
    35. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    36. Kellenberg, Derek K., 2009. "An empirical investigation of the pollution haven effect with strategic environment and trade policy," Journal of International Economics, Elsevier, vol. 78(2), pages 242-255, July.
    37. Wang, Tao & Watson, Jim, 2010. "Scenario analysis of China's emissions pathways in the 21st century for low carbon transition," Energy Policy, Elsevier, vol. 38(7), pages 3537-3546, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Kangyin & Jia, Rongwen & Zhao, Congyu & Wang, Kun, 2023. "Can smart transportation inhibit carbon lock-in? The case of China," Transport Policy, Elsevier, vol. 142(C), pages 59-69.
    2. Wei Jin & ZhongXiang Zhang, 2015. "Levelling the Playing Field: On the Missing Role of Network Externality in Designing Renewable Energy Technology Deployment Policies," Working Papers 2015.76, Fondazione Eni Enrico Mattei.
    3. Huang, Lizhen & Bohne, Rolf André & Lohne, Jardar, 2015. "Shelter and residential building energy consumption within the 450 ppm CO2eq constraints in different climate zones," Energy, Elsevier, vol. 90(P1), pages 965-979.
    4. Zhao, Congyu & Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "How does renewable energy encourage carbon unlocking? A global case for decarbonization," Resources Policy, Elsevier, vol. 83(C).
    5. Zhao, Congyu & Dong, Kangyin & Lee, Chien-Chiang, 2024. "Carbon lock-in endgame: Can energy trilemma eradication contribute to decarbonization?," Energy, Elsevier, vol. 293(C).
    6. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
    7. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    8. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    9. Sun, Kege & Zhou, Fengqi & Liu, Xinyu, 2024. "Study on the impact of emission trading scheme on technological progress of power generation sector in China: A perspective from energy transition," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Lisha & Li, Zhi, 2017. "Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect," Energy Policy, Elsevier, vol. 101(C), pages 150-161.
    2. Tilmann Rave & Ursula Triebswetter & Johann Wackerbauer, 2013. "Koordination von Innovations-, Energie- und Umweltpolitik," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 61.
    3. Li, Ke & Lin, Boqiang, 2015. "Heterogeneity in rebound effects: Estimated results and impact of China’s fossil-fuel subsidies," Applied Energy, Elsevier, vol. 149(C), pages 148-160.
    4. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    5. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    7. Lemoine, Derek, 2020. "General equilibrium rebound from energy efficiency innovation," European Economic Review, Elsevier, vol. 125(C).
    8. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    9. Kemp-Benedict, Eric, 2014. "Shifting to a Green Economy: Lock-in, Path Dependence, and Policy Options," MPRA Paper 60175, University Library of Munich, Germany.
    10. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    11. Corinne Langinier & Amrita Ray Chaudhuri, 2020. "Green Technology and Patents in the Presence of Green Consumers," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(1), pages 73-101.
    12. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    13. Hong, Li & Liang, Dong & Di, Wang, 2013. "Economic and environmental gains of China's fossil energy subsidies reform: A rebound effect case study with EIMO model," Energy Policy, Elsevier, vol. 54(C), pages 335-342.
    14. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    15. Lin, Boqiang & Yang, Fang & Liu, Xia, 2013. "A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices," Energy, Elsevier, vol. 58(C), pages 330-339.
    16. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    17. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    18. Qiang Du & Yi Li & Libiao Bai, 2017. "The Energy Rebound Effect for the Construction Industry: Empirical Evidence from China," Sustainability, MDPI, vol. 9(5), pages 1-11, May.
    19. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    20. Zha, Donglan & Chen, Qian & Wang, Lijun, 2022. "Exploring carbon rebound effects in Chinese households’ consumption: A simulation analysis based on a multi-regional input–output framework," Applied Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:939-945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.