IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v100y2017icp149-161.html
   My bibliography  Save this article

The direct and indirect CO2 rebound effect for private cars in China

Author

Listed:
  • Zhang, Yue-Jun
  • Liu, Zhao
  • Qin, Chang-Xiong
  • Tan, Tai-De

Abstract

The quantity of China's private cars has increased dramatically in the past decade, which has become one of the key sources of carbon emission and air pollution in the cities of China. In theory, to improve energy efficiency can reduce carbon emission significantly, but the result may be affected by the rebound effect. This paper utilizes a two-stage Almost Ideal Demand System (AIDS) model to estimate the total CO2 rebound effect for China's private cars during 2001–2012 at the provincial level, then uses a panel data model to analyze its impact factors. The results suggest that, first of all, the CO2 emissions of private cars have the super conservation effect, partial rebound effect and backfire effect among provinces in China. And the direct CO2 rebound effect plays a dominant role in the total CO2 rebound effect in most provinces. Second, the total CO2 rebound effect of private cars among China's provinces presents an overall convergence trend over time. Finally, the household expenditure and the population density have a negative and positive influence on the total CO2 rebound effect for China's private cars, respectively.

Suggested Citation

  • Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
  • Handle: RePEc:eee:enepol:v:100:y:2017:i:c:p:149-161
    DOI: 10.1016/j.enpol.2016.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516305535
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    2. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    3. Willoughby, Christopher, 2013. "How much can public private partnership really do for urban transport in developing countries?," Research in Transportation Economics, Elsevier, vol. 40(1), pages 34-55.
    4. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
    5. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    6. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    7. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    8. Daniel J. Graham & Stephen Glaister, 2002. "The Demand for Automobile Fuel: A Survey of Elasticities," Journal of Transport Economics and Policy, University of Bath, vol. 36(1), pages 1-25, January.
    9. Mitric, Slobodan, 2013. "Urban transport lending by the World Bank: The last decade," Research in Transportation Economics, Elsevier, vol. 40(1), pages 19-33.
    10. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    11. Charles-Cadogan, G., 2016. "Expected utility theory and inner and outer measures of loss aversion," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 10-20.
    12. Saunders, Harry D., 2000. "A view from the macro side: rebound, backfire, and Khazzoom-Brookes," Energy Policy, Elsevier, vol. 28(6-7), pages 439-449, June.
    13. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    14. Bentzen, Jan, 2004. "Estimating the rebound effect in US manufacturing energy consumption," Energy Economics, Elsevier, vol. 26(1), pages 123-134, January.
    15. Roy, Joyashree, 2000. "The rebound effect: some empirical evidence from India," Energy Policy, Elsevier, vol. 28(6-7), pages 433-438, June.
    16. Brannlund, Runar & Ghalwash, Tarek & Nordstrom, Jonas, 2007. "Increased energy efficiency and the rebound effect: Effects on consumption and emissions," Energy Economics, Elsevier, vol. 29(1), pages 1-17, January.
    17. Azam, Muhammad, 2016. "Does environmental degradation shackle economic growth? A panel data investigation on 11 Asian countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 175-182.
    18. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    19. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    20. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    21. Philippe Barla & Bernard Lamonde & Luis Miranda-Moreno & Nathalie Boucher, 2009. "Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect," Transportation, Springer, vol. 36(4), pages 389-402, July.
    22. Su, Qing, 2012. "A quantile regression analysis of the rebound effect: Evidence from the 2009 National Household Transportation Survey in the United States," Energy Policy, Elsevier, vol. 45(C), pages 368-377.
    23. Mavroeidis, Sophocles & Sasaki, Yuya & Welch, Ivo, 2015. "Estimation of heterogeneous autoregressive parameters with short panel data," Journal of Econometrics, Elsevier, vol. 188(1), pages 219-235.
    24. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    25. Ozturk, Ilhan & Acaravci, Ali, 2013. "The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in Turkey," Energy Economics, Elsevier, vol. 36(C), pages 262-267.
    26. Evans, Antony & Schäfer, Andreas, 2013. "The rebound effect in the aviation sector," Energy Economics, Elsevier, vol. 36(C), pages 158-165.
    27. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "The impact of household consumption on energy use and CO2 emissions in China," Energy, Elsevier, vol. 36(1), pages 656-670.
    28. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    29. Frondel, Manuel & Ritter, Nolan & Vance, Colin, 2012. "Heterogeneity in the rebound effect: Further evidence for Germany," Energy Economics, Elsevier, vol. 34(2), pages 461-467.
    30. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    31. Zhang, Yue-Jun & Hao, Jun-Fang & Song, Juan, 2016. "The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level," Applied Energy, Elsevier, vol. 174(C), pages 213-223.
    32. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    33. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    34. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis. Part 2: Simulation," Ecological Economics, Elsevier, vol. 86(C), pages 188-198.
    35. Mizobuchi, Kenichi, 2008. "An empirical study on the rebound effect considering capital costs," Energy Economics, Elsevier, vol. 30(5), pages 2486-2516, September.
    36. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    37. Sun, Chuanwang & Ouyang, Xiaoling, 2016. "Price and expenditure elasticities of residential energy demand during urbanization: An empirical analysis based on the household-level survey data in China," Energy Policy, Elsevier, vol. 88(C), pages 56-63.
    38. Lin, Boqiang & Yang, Fang & Liu, Xia, 2013. "A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices," Energy, Elsevier, vol. 58(C), pages 330-339.
    39. Matos, Fernando J.F. & Silva, Francisco J.F., 2011. "The rebound effect on road freight transport: Empirical evidence from Portugal," Energy Policy, Elsevier, vol. 39(5), pages 2833-2841, May.
    40. Saunders, Harry D., 2000. "Does predicted rebound depend on distinguishing between energy and energy services?," Energy Policy, Elsevier, vol. 28(6-7), pages 497-500, June.
    41. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    42. Guta, Dawit Diriba, 2012. "Application of an almost ideal demand system (AIDS) to Ethiopian rural residential energy use: Panel data evidence," Energy Policy, Elsevier, vol. 50(C), pages 528-539.
    43. Ghosh, Neal K. & Blackhurst, Michael F., 2014. "Energy savings and the rebound effect with multiple energy services and efficiency correlation," Ecological Economics, Elsevier, vol. 105(C), pages 55-66.
    44. Saunders, Harry D., 2008. "Fuel conserving (and using) production functions," Energy Economics, Elsevier, vol. 30(5), pages 2184-2235, September.
    45. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    46. Chambwera, Muyeye & Folmer, Henk, 2007. "Fuel switching in Harare: An almost ideal demand system approach," Energy Policy, Elsevier, vol. 35(4), pages 2538-2548, April.
    47. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    48. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    49. Du, Gang & Sun, Chuanwang & Fang, Zhongnan, 2015. "Evaluating the Atkinson index of household energy consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1080-1087.
    50. Anson, Sam & Turner, Karen, 2009. "Rebound and disinvestment effects in refined oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector," Energy Policy, Elsevier, vol. 37(9), pages 3608-3620, September.
    51. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    52. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenbo Li & Ruyin Long & Hong Chen & Feiyu Chen & Xiao Zheng & Muyi Yang, 2019. "Effect of Policy Incentives on the Uptake of Electric Vehicles in China," Sustainability, MDPI, Open Access Journal, vol. 11(12), pages 1-20, June.
    2. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    3. Wenbo Li & Ruyin Long & Hong Chen & Jichao Geng, 2017. "Household factors and adopting intention of battery electric vehicles: a multi-group structural equation model analysis among consumers in Jiangsu Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 945-960, June.
    4. Zhang, Yue-Jun & Peng, Hua-Rong, 2017. "Exploring the direct rebound effect of residential electricity consumption: An empirical study in China," Applied Energy, Elsevier, vol. 196(C), pages 132-141.
    5. Galvin, Ray, 2017. "How does speed affect the rebound effect in car travel? Conceptual issues explored in case study of 900 Formula 1 Grand Prix speed trials," Energy, Elsevier, vol. 128(C), pages 28-38.
    6. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    7. Ouyang, Xiaoling & Gao, Beiying & Du, Kerui & Du, Gang, 2018. "Industrial sectors' energy rebound effect: An empirical study of Yangtze River Delta urban agglomeration," Energy, Elsevier, vol. 145(C), pages 408-416.
    8. David Font Vivanco & Serenella Sala & Will McDowall, 2018. "Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-17, June.
    9. Li, Wenbo & Long, Ruyin & Chen, Hong & Yang, Tong & Geng, Jichao & Yang, Muyi, 2018. "Effects of personal carbon trading on the decision to adopt battery electric vehicles: Analysis based on a choice experiment in Jiangsu, China," Applied Energy, Elsevier, vol. 209(C), pages 478-488.
    10. Li, Ding & Gao, Ming & Hou, Wenxuan & Song, Malin & Chen, Jiandong, 2020. "A modified and improved method to measure economy-wide carbon rebound effects based on the PDA-MMI approach," Energy Policy, Elsevier, vol. 147(C).
    11. Chen, Zhenni & Du, Huibin & Li, Jianglong & Southworth, Frank & Ma, Shoufeng, 2019. "Achieving low-carbon urban passenger transport in China: Insights from the heterogeneous rebound effect," Energy Economics, Elsevier, vol. 81(C), pages 1029-1041.
    12. Khoshkalam Khosroshahi, Musa & Sayadi, Mohammad, 2020. "Tracking the sources of rebound effect resulting from the efficiency improvement in petrol, diesel, natural gas and electricity consumption; A CGE analysis for Iran," Energy, Elsevier, vol. 197(C).
    13. Liu, Xiaobing & Yan, Xuedong & Liu, Feng & Wang, Rui & Leng, Yan, 2019. "A trip-specific model for fuel saving estimation and subsidy policy making of carpooling based on empirical data," Applied Energy, Elsevier, vol. 240(C), pages 295-311.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
    2. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    3. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    4. Li, Jianglong & Li, Aijun & Xie, Xuan, 2018. "Rebound effect of transportation considering additional capital costs and input-output relationships: The role of subsistence consumption and unmet demand," Energy Economics, Elsevier, vol. 74(C), pages 441-455.
    5. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.
    6. Chen, Zhenni & Du, Huibin & Li, Jianglong & Southworth, Frank & Ma, Shoufeng, 2019. "Achieving low-carbon urban passenger transport in China: Insights from the heterogeneous rebound effect," Energy Economics, Elsevier, vol. 81(C), pages 1029-1041.
    7. Li, Ke & Lin, Boqiang, 2015. "Heterogeneity in rebound effects: Estimated results and impact of China’s fossil-fuel subsidies," Applied Energy, Elsevier, vol. 149(C), pages 148-160.
    8. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    9. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    10. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2014. "Measuring energy efficiency and rebound effects using a stochastic demand frontier approach: the US residential energy demand," Efficiency Series Papers 2014/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    11. Li, Ke & Zhang, Ning & Liu, Yanchu, 2016. "The energy rebound effects across China’s industrial sectors: An output distance function approach," Applied Energy, Elsevier, vol. 184(C), pages 1165-1175.
    12. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
    13. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    14. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    15. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    16. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Lin, Boqiang & Yang, Fang & Liu, Xia, 2013. "A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices," Energy, Elsevier, vol. 58(C), pages 330-339.
    18. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    19. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    20. Matthew E. Oliver & Juan Moreno-Cruz & Ross C. Beppler, 2019. "Microeconomics of the rebound effect for residential solar photovoltaic systems," CESifo Working Paper Series 7635, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:100:y:2017:i:c:p:149-161. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.