IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v101y2017icp98-110.html
   My bibliography  Save this article

Energy efficiency and rebound effect in European road freight transport

Author

Listed:
  • Llorca, Manuel
  • Jamasb, Tooraj

Abstract

Energy efficiency has become a primary energy policy goal in Europe and many countries and has conditioned the policies towards energy-intensive sectors such as road freight transport. However, energy efficiency improvements can lead to changes in the demand for energy services that offset some of the achieved energy savings in the form of rebound effects. Consequently, forecasts of energy savings can be overstated. This paper analyses the energy efficiency and rebound effects for road freight transport in 15 European countries during the 1992–2012 period. We use a recent methodology to estimate an energy demand function using a stochastic frontier analysis approach and examine the influence of key features of rebound effect in the road freight transport sector. We obtain, on average, a fuel efficiency of 89% and a rebound effect of 4%. Our results indicate that the achieved energy efficiencies are retained to a large extent. We also find, among other results, that the rebound effect is higher in countries with higher fuel efficiency and better quality of logistics. Finally, a simulation analysis shows significant environmental externalities costs even in countries with lower rebound effect.

Suggested Citation

  • Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
  • Handle: RePEc:eee:transa:v:101:y:2017:i:c:p:98-110
    DOI: 10.1016/j.tra.2017.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416307856
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Adeyemi, Olutomi I. & Hunt, Lester C., 2007. "Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change," Energy Economics, Elsevier, vol. 29(4), pages 693-709, July.
    2. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "Macroeconomic effects of efficiency policies for energy-intensive industries: The case of the UK Climate Change Agreements, 2000-2010," Energy Economics, Elsevier, vol. 29(4), pages 760-778, July.
    3. Matos, Fernando J.F. & Silva, Francisco J.F., 2011. "The rebound effect on road freight transport: Empirical evidence from Portugal," Energy Policy, Elsevier, vol. 39(5), pages 2833-2841, May.
    4. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 59-80.
    5. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    6. Martijn Brons & Panayotis Christidis, 2012. "External cost calculator for Marco Polo freight transport project proposals – call 2012 version," JRC Working Papers JRC72879, Joint Research Centre (Seville site).
    7. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    8. Llorca, Manuel & Baños, José & Somoza, José & Arbués, Pelayo, 2014. "A latent class approach for estimating energy demands and efficiency in transport: An application to Latin America and the Caribbean," Efficiency Series Papers 2014/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    9. Holguín-Veras, José & Thorson, Ellen, 2003. "Modeling commercial vehicle empty trips with a first order trip chain model," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 129-148, February.
    10. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    11. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    12. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    13. Hans Jakob Walnum & Carlo Aall & Søren Løkke, 2014. "Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved?," Sustainability, MDPI, Open Access Journal, vol. 6(12), pages 1-28, December.
    14. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    15. COELLI, Tim, 2000. "On the econometric estimation of the distance function representation of a production technology," CORE Discussion Papers 2000042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    17. Ruzzenenti, F. & Basosi, R., 2008. "The rebound effect: An evolutionary perspective," Ecological Economics, Elsevier, vol. 67(4), pages 526-537, November.
    18. Daniel J. Graham & Stephen Glaister, 2002. "The Demand for Automobile Fuel: A Survey of Elasticities," Journal of Transport Economics and Policy, University of Bath, vol. 36(1), pages 1-25, January.
    19. Caudill, Steven B. & Ford, Jon M., 1993. "Biases in frontier estimation due to heteroscedasticity," Economics Letters, Elsevier, vol. 41(1), pages 17-20.
    20. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    21. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    22. Manuel Frondel and Colin Vance, 2013. "Re-Identifying the Rebound: What About Asymmetry?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    23. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    24. Saunders, Harry D., 2000. "A view from the macro side: rebound, backfire, and Khazzoom-Brookes," Energy Policy, Elsevier, vol. 28(6-7), pages 439-449, June.
    25. Filippini, Massimo & Hunt, Lester C. & Zorić, Jelena, 2014. "Impact of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector," Energy Policy, Elsevier, vol. 69(C), pages 73-81.
    26. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    27. Massimo Filippini & Luis Orea, 2014. "Applications of the stochastic frontier approach in Energy Economics," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 35-42.
    28. Joanne Evans & Massimo Filippini & Lester C. Hunt, 2013. "The contribution of energy efficiency towards meeting CO2 targets," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 8, pages 175-223, Edward Elgar Publishing.
    29. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    30. Saunders, Harry D., 2008. "Fuel conserving (and using) production functions," Energy Economics, Elsevier, vol. 30(5), pages 2184-2235, September.
    31. Sam Anson, 2009. "Rebound and disinvestment effects in oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector," Working Papers 0901, University of Strathclyde Business School, Department of Economics.
    32. Kumbhakar, Subal C., 2011. "Estimation of production technology when the objective is to maximize return to the outlay," European Journal of Operational Research, Elsevier, vol. 208(2), pages 170-176, January.
    33. Mork, Knut Anton, 1989. "Oil and Macroeconomy When Prices Go Up and Down: An Extension of Hamilton's Results," Journal of Political Economy, University of Chicago Press, vol. 97(3), pages 740-744, June.
    34. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Srikaew, Artit, 2011. "Projection of future transport energy demand of Thailand," Energy Policy, Elsevier, vol. 39(5), pages 2754-2763, May.
    35. Wadud, Zia, 2016. "Diesel demand in the road freight sector in the UK: Estimates for different vehicle types," Applied Energy, Elsevier, vol. 165(C), pages 849-857.
    36. Winebrake, James J. & Green, Erin H. & Comer, Bryan & Corbett, James J. & Froman, Sarah, 2012. "Estimating the direct rebound effect for on-road freight transportation," Energy Policy, Elsevier, vol. 48(C), pages 252-259.
    37. Nathan W. Chan & Kenneth Gillingham, 2015. "The Microeconomic Theory of the Rebound Effect and Its Welfare Implications," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 133-159.
    38. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    39. Tsamboulas, Dimitrios & Vrenken, Huub & Lekka, Anna-Maria, 2007. "Assessment of a transport policy potential for intermodal mode shift on a European scale," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 715-733, October.
    40. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    41. De Borger, Bruno & Mulalic, Ismir, 2012. "The determinants of fuel use in the trucking industry—volume, fleet characteristics and the rebound effect," Transport Policy, Elsevier, vol. 24(C), pages 284-295.
    42. Piecyk, Maja I. & McKinnon, Alan C., 2010. "Forecasting the carbon footprint of road freight transport in 2020," International Journal of Production Economics, Elsevier, vol. 128(1), pages 31-42, November.
    43. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    44. Dermot Gately & Hiliard G. Huntington, 2002. "The Asymmetric Effects of Changes in Price and Income on Energy and Oil Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 19-55.
    45. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    46. Frondel, Manuel & Ritter, Nolan & Vance, Colin, 2012. "Heterogeneity in the rebound effect: Further evidence for Germany," Energy Economics, Elsevier, vol. 34(2), pages 461-467.
    47. Anson, Sam & Turner, Karen, 2009. "Rebound and disinvestment effects in refined oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector," Energy Policy, Elsevier, vol. 37(9), pages 3608-3620, September.
    48. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    49. Harty D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 131-148.
    50. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    51. Dermot Gately, 1990. "The U.S. Demand for Highway Travel and Motor Fuel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashem Omrani & Khatereh Shafaat & Arash Alizadeh, 2019. "Integrated data envelopment analysis and cooperative game for evaluating energy efficiency of transportation sector: a case of Iran," Annals of Operations Research, Springer, vol. 274(1), pages 471-499, March.
    2. Saidi, Samir & Shahbaz, Muhammad & Akhtar, Pervaiz, 2018. "The long-run relationships between transport energy consumption, transport infrastructure, and economic growth in MENA countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 78-95.
    3. Franco Ruzzenenti, 2018. "The Prism of Elasticity in Rebound Effect Modelling: An Insight from the Freight Transport Sector," Sustainability, MDPI, Open Access Journal, vol. 10(8), pages 1-13, August.
    4. Samir, Saidi & Shahbaz, Muhammad & Akhtar, Pervaiz, 2018. "The Long-Run Relationship between Transport Energy Consumption and Transport Infrastructure on Economic Growth in MENA Countries," MPRA Paper 85037, University Library of Munich, Germany, revised 06 Mar 2018.
    5. Ying Han & Jianhua Shi & Yuanfan Yang & Yaxin Wang, 2019. "Direct Rebound Effect for Electricity Consumption of Urban Residents in China Based on the Spatial Spillover Effect," Energies, MDPI, Open Access Journal, vol. 12(11), pages 1-16, May.
    6. Tamás Bányai, 2018. "Real-Time Decision Making in First Mile and Last Mile Logistics: How Smart Scheduling Affects Energy Efficiency of Hyperconnected Supply Chain Solutions," Energies, MDPI, Open Access Journal, vol. 11(7), pages 1-25, July.
    7. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    8. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.
    9. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.

    More about this item

    Keywords

    European road freight transport; Stochastic frontier analysis; Energy efficiency; Rebound effect;

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:101:y:2017:i:c:p:98-110. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.