IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i5p2833-2841.html
   My bibliography  Save this article

The rebound effect on road freight transport: Empirical evidence from Portugal

Author

Listed:
  • Matos, Fernando J.F.
  • Silva, Francisco J.F.

Abstract

Because a large proportion of total operating costs for transportation companies goes towards energy, a reduction in energy operating costs, brought about by an increase in fleet fuel efficiency, or an increase in operational efficiency, results in a change in the relative cost of road freight transportation. This fact could result in an increase in the demand for such services. If this is true, the result would be an increase in total fuel consumption. Consequently, that part of the energy savings obtained through the increased energy efficiency would be lost. The existence of a "Rebound Effect" is especially important in the road freight transportation sector and is crucial for the definition of a national energy policy. In this study, data from the road freight transportation sector in Portugal for the years of 1987 through 2006 was analyzed. It was determined that an increase in energy efficiency did not cause a backfire, but did cause a total direct rebound effect of 24.1%. In addition, fleet operators were more inclined to adopt operational efficiencies than technological fuel efficiencies as a means of increasing the total operational efficiency.

Suggested Citation

  • Matos, Fernando J.F. & Silva, Francisco J.F., 2011. "The rebound effect on road freight transport: Empirical evidence from Portugal," Energy Policy, Elsevier, vol. 39(5), pages 2833-2841, May.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2833-2841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(11)00148-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brookes, Len, 1990. "The greenhouse effect: the fallacies in the energy efficiency solution," Energy Policy, Elsevier, vol. 18(2), pages 199-201, March.
    2. Amory B. Lovins, 1988. "Energy Saving from the Adoption of More Efficient Appliances: Another View," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 155-170.
    3. Blair, Roger D & Kaserman, David L & Tepel, Richard C, 1984. "The Impact of Improved Mileage on Gasoline Consumption," Economic Inquiry, Western Economic Association International, vol. 22(2), pages 209-217, April.
    4. Schipper, Lee & Grubb, Michael, 2000. "On the rebound? Feedback between energy intensities and energy uses in IEA countries," Energy Policy, Elsevier, vol. 28(6-7), pages 367-388, June.
    5. Winston, Clifford, 1981. "A Disaggregate Model of the Demand for Intercity Freight Transportation," Econometrica, Econometric Society, vol. 49(4), pages 981-1006, June.
    6. Saunders, Harry D., 2000. "Does predicted rebound depend on distinguishing between energy and energy services?," Energy Policy, Elsevier, vol. 28(6-7), pages 497-500, June.
    7. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    8. Clifton T Jones, 1993. "Another Look at U.S. Passenger Vehicle Use and the 'Rebound' Effect from Improved Fuel Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 99-110.
    9. Grubb, M. J., 1990. "Communication Energy efficiency and economic fallacies," Energy Policy, Elsevier, vol. 18(8), pages 783-785, October.
    10. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    11. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 38(2), pages 112-134.
    12. Brookes, L. G., 1992. "Energy efficiency and economic fallacies: a reply," Energy Policy, Elsevier, vol. 20(5), pages 390-392, May.
    13. Jorgenson, Dale W, 1984. "The Role of Energy in Productivity Growth," American Economic Review, American Economic Association, vol. 74(2), pages 26-30, May.
    14. Greenhalgh, Geoffrey, 1990. "Energy conservation policies," Energy Policy, Elsevier, vol. 18(3), pages 293-299, April.
    15. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    16. Keepin, Bill & Kats, Gregory, 1988. "Greenhouse warming : Comparative analysis of nuclear and efficiency abatement strategies," Energy Policy, Elsevier, vol. 16(6), pages 538-561, December.
    17. Herring, Horace, 2006. "Energy efficiency—a critical view," Energy, Elsevier, vol. 31(1), pages 10-20.
    18. Sam H. Schurr, 1982. "Energy Efficiency and Productive Efficiency: Some Thoughts Based on American Experience," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 3-14.
    19. Toke, Dave, 1990. "Increasing energy supply not inevitable," Energy Policy, Elsevier, vol. 18(7), pages 671-673, September.
    20. Brookes, Leonard, 2000. "Energy efficiency fallacies revisited," Energy Policy, Elsevier, vol. 28(6-7), pages 355-366, June.
    21. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    22. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    23. Dale W. Jorgenson, 1984. "The Role of Energy in Productivity Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 11-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Li & Liang, Dong & Di, Wang, 2013. "Economic and environmental gains of China's fossil energy subsidies reform: A rebound effect case study with EIMO model," Energy Policy, Elsevier, vol. 54(C), pages 335-342.
    2. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    3. Gomez, Juan & Vassallo, José Manuel, 2015. "Evolution over time of heavy vehicle volume in toll roads: A dynamic panel data to identify key explanatory variables in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 282-297.
    4. Ruzzenenti, Franco & Basosi, Riccardo, 2017. "Modelling the rebound effect with network theory: An insight into the European freight transport sector," Energy, Elsevier, vol. 118(C), pages 272-283.
    5. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2013. "Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development," Energy Policy, Elsevier, vol. 58(C), pages 347-357.
    6. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
    7. Matthias Klumpp, 2016. "To Green or Not to Green: A Political, Economic and Social Analysis for the Past Failure of Green Logistics," Sustainability, MDPI, Open Access Journal, vol. 8(5), pages 1-22, May.
    8. repec:gam:jsusta:v:9:y:2017:i:5:p:842-:d:98960 is not listed on IDEAS
    9. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    10. Annika K. Jägerbrand, 2015. "New Framework of Sustainable Indicators for Outdoor LED (Light Emitting Diodes) Lighting and SSL (Solid State Lighting)," Sustainability, MDPI, Open Access Journal, vol. 7(1), pages 1-36, January.
    11. repec:gam:jsusta:v:8:y:2016:i:5:p:441:d:69422 is not listed on IDEAS
    12. repec:eee:energy:v:128:y:2017:i:c:p:28-38 is not listed on IDEAS
    13. repec:gam:jsusta:v:10:y:2018:i:2:p:397-:d:130100 is not listed on IDEAS
    14. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    15. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
    16. Galvin, Ray, 2015. "‘Constant’ rebound effects in domestic heating: Developing a cross-sectional method," Ecological Economics, Elsevier, vol. 110(C), pages 28-35.
    17. Odeck, James & Johansen, Kjell, 2016. "Elasticities of fuel and traffic demand and the direct rebound effects: An econometric estimation in the case of Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 1-13.
    18. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    19. Hans Jakob Walnum & Carlo Aall & Søren Løkke, 2014. "Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved?," Sustainability, MDPI, Open Access Journal, vol. 6(12), pages 1-28, December.
    20. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
    21. Li, Ke & Lin, Boqiang, 2015. "Heterogeneity in rebound effects: Estimated results and impact of China’s fossil-fuel subsidies," Applied Energy, Elsevier, vol. 149(C), pages 148-160.
    22. Winebrake, James J. & Green, Erin H. & Comer, Bryan & Corbett, James J. & Froman, Sarah, 2012. "Estimating the direct rebound effect for on-road freight transportation," Energy Policy, Elsevier, vol. 48(C), pages 252-259.
    23. De Borger, Bruno & Mulalic, Ismir, 2012. "The determinants of fuel use in the trucking industry—volume, fleet characteristics and the rebound effect," Transport Policy, Elsevier, vol. 24(C), pages 284-295.
    24. Shu, Gequn & Zhao, Jian & Tian, Hua & Liang, Xingyu & Wei, Haiqiao, 2012. "Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123," Energy, Elsevier, vol. 45(1), pages 806-816.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2833-2841. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.