IDEAS home Printed from https://ideas.repec.org/a/aen/journl/1984v05-03-a02.html
   My bibliography  Save this article

The Role of Energy in Productivity Growth

Author

Listed:
  • Dale W. Jorgenson

Abstract

The objective of this paper is to analyze the role of energy in the growth of productivity. The special significance of energy in economic growth was first established in the classic study Energy and the American Economy 1850-1975, by Schurr and his associates (1960) at Resources for the Future. From 1920 to 1955, Schurr noted, energy intensity of production had fallen while both labor and total factor productivity were rising.' The simultaneous decline of energy intensity and labor intensity of production could not be explained solely on the basis of substitution of less expensive energy for more expensive labor. Since the quantity of both energy and labor inputs required for a given level of output had been reduced, technical change would also be a critical explanatory factor.From 1920 to 1955 the utilization of electricity had expanded by a factor of more than ten, while consumption of all other forms of energy only doubled. The two key features of technical change during this period were that (1) the thermal efficiency of conversion of fuels into electricity increased by a factor of three, and (2) "the unusual characteristics of electricity had made it possible to perform tasks in altogether different ways than if the fuels had to be used directly."2 For example, as Schurr noted, the electrification of industrial processes had led to much greater flexibility in the application of energy to industrial production.

Suggested Citation

  • Dale W. Jorgenson, 1984. "The Role of Energy in Productivity Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 11-26.
  • Handle: RePEc:aen:journl:1984v05-03-a02
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=1648
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sam H. Schurr, 1982. "Energy Efficiency and Productive Efficiency: Some Thoughts Based on American Experience," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 3-14.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    2. Matos, Fernando J.F. & Silva, Francisco J.F., 2011. "The rebound effect on road freight transport: Empirical evidence from Portugal," Energy Policy, Elsevier, vol. 39(5), pages 2833-2841, May.
    3. Choi, Bongseok & Park, Wooyoung & Yu, Bok-Keun, 2017. "Energy intensity and firm growth," Energy Economics, Elsevier, vol. 65(C), pages 399-410.
    4. Khademvatani, Asgar & Gordon, Daniel V., 2013. "A marginal measure of energy efficiency: The shadow value," Energy Economics, Elsevier, vol. 38(C), pages 153-159.
    5. Rath, Badri Narayan & Akram, Vaseem & Bal, Debi Prasad & Mahalik, Mantu Kumar, 2019. "Do fossil fuel and renewable energy consumption affect total factor productivity growth? Evidence from cross-country data with policy insights," Energy Policy, Elsevier, vol. 127(C), pages 186-199.
    6. Géza Tóth & Tekla Sebestyén Szép, 2019. "Spatial Evolution of the Energy and Economic Centers of Gravity," Resources, MDPI, vol. 8(2), pages 1-19, May.
    7. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    8. Brookes, Leonard, 2000. "Energy efficiency fallacies revisited," Energy Policy, Elsevier, vol. 28(6-7), pages 355-366, June.
    9. Halkos, George & Tzeremes, Nickolaos, 2011. "The effect of energy consumption on countries’ economic efficiency: a conditional robust non parametric approach," MPRA Paper 28692, University Library of Munich, Germany.
    10. Michael A. Toman & Barbora Jemelkova, 2003. "Energy and Economic Development: An Assessment of the State of Knowledge," The Energy Journal, , vol. 24(4), pages 93-112, October.
    11. Napolitano, Oreste & Foresti, Pasquale & Kounetas, Konstantinos & Spagnolo, Nicola, 2023. "The impact of energy, renewable and CO2 emissions efficiency on countries’ productivity," Energy Economics, Elsevier, vol. 125(C).
    12. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    13. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    14. Saunders, Harry D., 2008. "Fuel conserving (and using) production functions," Energy Economics, Elsevier, vol. 30(5), pages 2184-2235, September.
    15. Greening, Lorna A. & Davis, William B. & Schipper, Lee, 1998. "Decomposition of aggregate carbon intensity for the manufacturing sector: comparison of declining trends from 10 OECD countries for the period 1971-1991," Energy Economics, Elsevier, vol. 20(1), pages 43-65, February.
    16. Michael Huesemann & Joyce Huesemann, 2008. "Will progress in science and technology avert or accelerate global collapse? A critical analysis and policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 787-825, December.
    17. Herring, Horace, 1999. "Does energy efficiency save energy? The debate and its consequences," Applied Energy, Elsevier, vol. 63(3), pages 209-226, July.
    18. Wang, Chunhua, 2007. "Decomposing energy productivity change: A distance function approach," Energy, Elsevier, vol. 32(8), pages 1326-1333.
    19. Eirini Stergiou & Nikos Rigas & Eftychia Zaroutieri & Konstantinos Kounetas, 2023. "Energy, renewable and technical efficiency convergence: a global evidence," Economic Change and Restructuring, Springer, vol. 56(3), pages 1601-1628, June.
    20. Halsnæs, Kirsten & Garg, Amit, 2011. "Assessing the Role of Energy in Development and Climate Policies--Conceptual Approach and Key Indicators," World Development, Elsevier, vol. 39(6), pages 987-1001, June.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:1984v05-03-a02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.