IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v48y2012icp252-259.html
   My bibliography  Save this article

Estimating the direct rebound effect for on-road freight transportation

Author

Listed:
  • Winebrake, James J.
  • Green, Erin H.
  • Comer, Bryan
  • Corbett, James J.
  • Froman, Sarah

Abstract

Energy and environmental concerns have spawned new policies aimed at reducing emissions and fuel consumption of heavy-duty vehicles (HDVs) worldwide. While such policies intend to reduce HDV energy consumption and emissions, energy savings that reduce transportation costs may lead to increased demand for HDV transportation services. Increased HDV transportation, in turn, can result in increased energy use and emissions—i.e., a direct “rebound effect.” This paper provides a critical review of the literature related to the HDV rebound effect. Results of this review demonstrate that the lack of focused studies in this area combined with the variability and heterogeneity of the trucking sector limit general understanding of the HDV rebound effect. Currently, the studies that do exist often create biased or erroneous rebound effect estimates by inappropriately relying on freight elasticities or applying metrics that omit important elements of fuel consumption. Research following a more transparent and coherent approach can improve estimates of the rebound effect from policy measures to improve HDV energy efficiency.

Suggested Citation

  • Winebrake, James J. & Green, Erin H. & Comer, Bryan & Corbett, James J. & Froman, Sarah, 2012. "Estimating the direct rebound effect for on-road freight transportation," Energy Policy, Elsevier, vol. 48(C), pages 252-259.
  • Handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:252-259
    DOI: 10.1016/j.enpol.2012.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512004302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    2. David L. Greene & James R. Kahn & Robert C. Gibson, 1999. "Fuel Economy Rebound Effect for U.S. Household Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-31.
    3. Jaccard, Mark & Bataille, Chris, 2000. "Estimating future elasticities of substitution for the rebound debate," Energy Policy, Elsevier, vol. 28(6-7), pages 451-455, June.
    4. Saunders, Harry D., 2000. "A view from the macro side: rebound, backfire, and Khazzoom-Brookes," Energy Policy, Elsevier, vol. 28(6-7), pages 439-449, June.
    5. Sam Anson, 2009. "Rebound and disinvestment effects in oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector," Working Papers 0901, University of Strathclyde Business School, Department of Economics.
    6. Li, Zheng & Hensher, David A. & Rose, John M., 2011. "Identifying sources of systematic variation in direct price elasticities from revealed preference studies of inter-city freight demand," Transport Policy, Elsevier, vol. 18(5), pages 727-734, September.
    7. Rich, J. & Kveiborg, O. & Hansen, C.O., 2011. "On structural inelasticity of modal substitution in freight transport," Journal of Transport Geography, Elsevier, vol. 19(1), pages 134-146.
    8. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    9. Beuthe, Michel & Jourquin, Bart & Geerts, Jean-François & Koul à Ndjang' Ha, Christian, 2001. "Freight transportation demand elasticities: a geographic multimodal transportation network analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(4), pages 253-266, August.
    10. Satar, NurulHuda Mohd & Peoples, James, 2010. "An empirical test of modal choice and allocative efficiency: Evidence from US coal transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1043-1056, November.
    11. Brookes, Leonard, 2000. "Energy efficiency fallacies revisited," Energy Policy, Elsevier, vol. 28(6-7), pages 355-366, June.
    12. Dermot Gately, 1990. "The U.S. Demand for Highway Travel and Motor Fuel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-74.
    13. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    14. Blair, Roger D & Kaserman, David L & Tepel, Richard C, 1984. "The Impact of Improved Mileage on Gasoline Consumption," Economic Inquiry, Western Economic Association International, vol. 22(2), pages 209-217, April.
    15. Matos, Fernando J.F. & Silva, Francisco J.F., 2011. "The rebound effect on road freight transport: Empirical evidence from Portugal," Energy Policy, Elsevier, vol. 39(5), pages 2833-2841, May.
    16. Schipper, Lee & Grubb, Michael, 2000. "On the rebound? Feedback between energy intensities and energy uses in IEA countries," Energy Policy, Elsevier, vol. 28(6-7), pages 367-388, June.
    17. Winston, Clifford, 1981. "A Disaggregate Model of the Demand for Intercity Freight Transportation," Econometrica, Econometric Society, vol. 49(4), pages 981-1006, June.
    18. Greene, David L., 2012. "Rebound 2007: Analysis of U.S. light-duty vehicle travel statistics," Energy Policy, Elsevier, vol. 41(C), pages 14-28.
    19. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    20. Tae H. Oum & Waters, W.G. & Jong Say Yong, 1990. "A survey of recent estimates of price elasticities of demand for transport," Policy Research Working Paper Series 359, The World Bank.
    21. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    22. Rich, J. & Holmblad, P.M. & Hansen, C.O., 2009. "A weighted logit freight mode-choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 1006-1019, November.
    23. Abdelwahab, Walid M., 1998. "Elasticities of mode choice probabilities and market elasticities of demand: Evidence from a simultaneous mode choice/shipment-size freight transport model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(4), pages 257-266, December.
    24. Anson, Sam & Turner, Karen, 2009. "Rebound and disinvestment effects in refined oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector," Energy Policy, Elsevier, vol. 37(9), pages 3608-3620, September.
    25. Friedlaender, Ann F & Spady, Richard H, 1980. "A Derived Demand Function for Freight Transportation," The Review of Economics and Statistics, MIT Press, vol. 62(3), pages 432-441, August.
    26. Alcott, Blake, 2005. "Jevons' paradox," Ecological Economics, Elsevier, vol. 54(1), pages 9-21, July.
    27. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    28. Sivak, Michael & Tsimhoni, Omer, 2009. "Fuel efficiency of vehicles on US roads: 1923-2006," Energy Policy, Elsevier, vol. 37(8), pages 3168-3170, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    2. Kerstin Robertson & Annika Jägerbrand & Jan R. Eriksson, 2015. "Regional Transport Indicators Used in Sweden for Measurement, Reporting and Verification of CO 2 Emissions," Challenges, MDPI, vol. 6(1), pages 1-16, April.
    3. Franco Ruzzenenti, 2018. "The Prism of Elasticity in Rebound Effect Modelling: An Insight from the Freight Transport Sector," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    4. Hans Jakob Walnum & Carlo Aall & Søren Løkke, 2014. "Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved?," Sustainability, MDPI, vol. 6(12), pages 1-28, December.
    5. Li, Ke & Lin, Boqiang, 2015. "Heterogeneity in rebound effects: Estimated results and impact of China’s fossil-fuel subsidies," Applied Energy, Elsevier, vol. 149(C), pages 148-160.
    6. Gomez, Juan & Vassallo, José Manuel, 2015. "Evolution over time of heavy vehicle volume in toll roads: A dynamic panel data to identify key explanatory variables in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 282-297.
    7. Ruzzenenti, Franco & Basosi, Riccardo, 2017. "Modelling the rebound effect with network theory: An insight into the European freight transport sector," Energy, Elsevier, vol. 118(C), pages 272-283.
    8. Ensieh Shojaeddini & Ben Gilbert, 2023. "Heterogeneity in the Rebound Effect: Evidence from Efficient Lighting Subsidies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 173-217, January.
    9. Turner, Elizabeth H. & Thompson, Mark A., 2023. "Further evidence on the financial impact of environmental regulations on the trucking industry," Transport Policy, Elsevier, vol. 133(C), pages 134-143.
    10. Matthias Klumpp, 2016. "To Green or Not to Green: A Political, Economic and Social Analysis for the Past Failure of Green Logistics," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    11. Abiye Tob-Ogu & Niraj Kumar & John Cullen & Erica E. F. Ballantyne, 2018. "Sustainability Intervention Mechanisms for Managing Road Freight Transport Externalities: A Systematic Literature Review," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    12. Matthias Klumpp, 2017. "Do Forwarders Improve Sustainability Efficiency? Evidence from a European DEA Malmquist Index Calculation," Sustainability, MDPI, vol. 9(5), pages 1-33, May.
    13. Muhammad Omer, 2018. "Estimating Elasticity of Transport Fuel Demand in Pakistan," SBP Working Paper Series 96, State Bank of Pakistan, Research Department.
    14. François Des Rosiers & Marius Thériault & Gjin Biba & Marie-Hélène Vandersmissen, 2017. "Greenhouse gas emissions and urban form: Linking households’ socio-economic status with housing and transportation choices," Environment and Planning B, , vol. 44(5), pages 964-985, September.
    15. Matthias Klumpp, 2018. "How to Achieve Supply Chain Sustainability Efficiently? Taming the Triple Bottom Line Split Business Cycle," Sustainability, MDPI, vol. 10(2), pages 1-23, February.
    16. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    17. Figliozzi, Miguel & Saenz, Jesus & Faulin, Javier, 2020. "Minimization of urban freight distribution lifecycle CO2e emissions: Results from an optimization model and a real-world case study," Transport Policy, Elsevier, vol. 86(C), pages 60-68.
    18. Fulton, Lew & Miller, Marshall, 2015. "Strategies for Transitioning to Low-Carbon Emission Trucks in the United States," Institute of Transportation Studies, Working Paper Series qt93g5336t, Institute of Transportation Studies, UC Davis.
    19. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Matthew E. Oliver & Juan Moreno-Cruz & Ross C. Beppler, 2019. "Microeconomics of the rebound effect for residential solar photovoltaic systems," CESifo Working Paper Series 7635, CESifo.
    21. Feyza G. Sahinyazan & Marie‐Ève Rancourt & Vedat Verter, 2021. "Improving Transportation Procurement in the Humanitarian Sector: A Data‐driven Approach for Abnormally Low Bid Detection," Production and Operations Management, Production and Operations Management Society, vol. 30(4), pages 1082-1109, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    2. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    3. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
    4. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    5. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    6. Koesler, Simon & Swales, Kim & Turner, Karen, 2014. "Beyond national economy-wide rebound effects: An applied general equilibrium analysis incorporating international spillover effects," ZEW Discussion Papers 14-025, ZEW - Leibniz Centre for European Economic Research.
    7. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    8. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    9. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    10. Jeroen Bergh, 2011. "Energy Conservation More Effective With Rebound Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 43-58, January.
    11. Shao, Shuai & Huang, Tao & Yang, Lili, 2014. "Using latent variable approach to estimate China׳s economy-wide energy rebound effect over 1954–2010," Energy Policy, Elsevier, vol. 72(C), pages 235-248.
    12. Hans Jakob Walnum & Carlo Aall & Søren Løkke, 2014. "Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved?," Sustainability, MDPI, vol. 6(12), pages 1-28, December.
    13. Alcott, Blake, 2005. "Jevons' paradox," Ecological Economics, Elsevier, vol. 54(1), pages 9-21, July.
    14. de Haan, Peter & Mueller, Michel G. & Peters, Anja, 2006. "Does the hybrid Toyota Prius lead to rebound effects? Analysis of size and number of cars previously owned by Swiss Prius buyers," Ecological Economics, Elsevier, vol. 58(3), pages 592-605, June.
    15. Su, Qing, 2012. "A quantile regression analysis of the rebound effect: Evidence from the 2009 National Household Transportation Survey in the United States," Energy Policy, Elsevier, vol. 45(C), pages 368-377.
    16. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    17. Michael Huesemann & Joyce Huesemann, 2008. "Will progress in science and technology avert or accelerate global collapse? A critical analysis and policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 787-825, December.
    18. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    19. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    20. Ruzzenenti, Franco & Basosi, Riccardo, 2017. "Modelling the rebound effect with network theory: An insight into the European freight transport sector," Energy, Elsevier, vol. 118(C), pages 272-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:252-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.