IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v86y2020icp60-68.html
   My bibliography  Save this article

Minimization of urban freight distribution lifecycle CO2e emissions: Results from an optimization model and a real-world case study

Author

Listed:
  • Figliozzi, Miguel
  • Saenz, Jesus
  • Faulin, Javier

Abstract

This research models urban freight distribution services lifecycle CO2e emissions. A lifecycle emissions minimization model for the fleet size and composition problem is presented and applied to a real-world case study. The model explicitly incorporates parking and idling emissions which are significant in multi-stop urban distribution routes. Lifecycle emission elasticities as well as the impact of logistics constraints such as route duration and vehicle cargo capacity are estimated and analyzed. Policy implications and tradeoffs between electric tricycles and conventional diesel vans are discussed.

Suggested Citation

  • Figliozzi, Miguel & Saenz, Jesus & Faulin, Javier, 2020. "Minimization of urban freight distribution lifecycle CO2e emissions: Results from an optimization model and a real-world case study," Transport Policy, Elsevier, vol. 86(C), pages 60-68.
  • Handle: RePEc:eee:trapol:v:86:y:2020:i:c:p:60-68
    DOI: 10.1016/j.tranpol.2018.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X17303426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2018.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winebrake, James J. & Green, Erin H. & Comer, Bryan & Corbett, James J. & Froman, Sarah, 2012. "Estimating the direct rebound effect for on-road freight transportation," Energy Policy, Elsevier, vol. 48(C), pages 252-259.
    2. Jabali, Ola & Gendreau, Michel & Laporte, Gilbert, 2012. "A continuous approximation model for the fleet composition problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1591-1606.
    3. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    4. Niklas Arvidsson & Johan Woxenius & Catrin Lammgård, 2013. "Review of Road Hauliers' Measures for Increasing Transport Efficiency and Sustainability in Urban Freight Distribution," Transport Reviews, Taylor & Francis Journals, vol. 33(1), pages 107-127, January.
    5. Brodrick, Christie-Joy & Lipman, Timothy & Farshchi, Mohammad & Lutsey, Nicholas P. & Dwyer, Harry A. & Sperling, Dan & Gouse, Bill & Harris, D Bruce & King, Foy G, 2002. "Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks," University of California Transportation Center, Working Papers qt3dn7n50v, University of California Transportation Center.
    6. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    7. Brodrick, Christie-Joy & Lipman, Timothy & Farshchi, Mohammad & Lutsey, Nicholas & Dwyer, Harry & Sperling, Daniel & Gouse, S. William & King, Foy, 2002. "Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks," Institute of Transportation Studies, Working Paper Series qt1bt204qt, Institute of Transportation Studies, UC Davis.
    8. Carlos F. Daganzo, 1984. "The Distance Traveled to Visit N Points with a Maximum of C Stops per Vehicle: An Analytic Model and an Application," Transportation Science, INFORMS, vol. 18(4), pages 331-350, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Fangxi & Yin, Zhiwei & Ye, Yingwei & Sun, Daniel(Jian), 2020. "Taxi hailing choice behavior and economic benefit analysis of emission reduction based on multi-mode travel big data," Transport Policy, Elsevier, vol. 97(C), pages 73-84.
    2. José-Fernando Camacho-Vallejo & Lilian López-Vera & Alice E. Smith & José-Luis González-Velarde, 2022. "A tabu search algorithm to solve a green logistics bi-objective bi-level problem," Annals of Operations Research, Springer, vol. 316(2), pages 927-953, September.
    3. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    4. Dietmar Göhlich & Kai Nagel & Anne Magdalene Syré & Alexander Grahle & Kai Martins-Turner & Ricardo Ewert & Ricardo Miranda Jahn & Dominic Jefferies, 2021. "Integrated Approach for the Assessment of Strategies for the Decarbonization of Urban Traffic," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    5. Sahu, Prasanta K. & Qureshi, Danish & Pani, Agnivesh, 2022. "Examining commercial vehicle fleet ownership decisions and the mediating role of freight generation: A structural equation modeling assessment," Transport Policy, Elsevier, vol. 126(C), pages 26-33.
    6. Sergio Maria Patella & Gianluca Grazieschi & Valerio Gatta & Edoardo Marcucci & Stefano Carrese, 2020. "The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review," Sustainability, MDPI, vol. 13(1), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ellegood, William A. & Campbell, James F. & North, Jeremy, 2015. "Continuous approximation models for mixed load school bus routing," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 182-198.
    2. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    3. Huang, Michael & Smilowitz, Karen R. & Balcik, Burcu, 2013. "A continuous approximation approach for assessment routing in disaster relief," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 20-41.
    4. Baller, Annelieke C. & Dabia, Said & Dullaert, Wout E.H. & Vigo, Daniele, 2019. "The Dynamic-Demand Joint Replenishment Problem with Approximated Transportation Costs," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1013-1033.
    5. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    6. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    7. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Ngoc Anh Dung Do & Izabela Ewa Nielsen & Gang Chen & Peter Nielsen, 2016. "A simulation-based genetic algorithm approach for reducing emissions from import container pick-up operation at container terminal," Annals of Operations Research, Springer, vol. 242(2), pages 285-301, July.
    9. Lei, Chao & Ouyang, Yanfeng, 2018. "Continuous approximation for demand balancing in solving large-scale one-commodity pickup and delivery problems," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 90-109.
    10. Jabali, Ola & Gendreau, Michel & Laporte, Gilbert, 2012. "A continuous approximation model for the fleet composition problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1591-1606.
    11. Tzeng, Gwo-Hshiung & Lin, Cheng-Wei & Opricovic, Serafim, 2005. "Multi-criteria analysis of alternative-fuel buses for public transportation," Energy Policy, Elsevier, vol. 33(11), pages 1373-1383, July.
    12. Lutsey, Nicholas & Brodrick, Christie-Joy & Lipman, Timothy, 2007. "Analysis of potential fuel consumption and emissions reductions from fuel cell auxiliary power units (APUs) in long-haul trucks," Energy, Elsevier, vol. 32(12), pages 2428-2438.
    13. John Gunnar Carlsson & Mehdi Behroozi & Raghuveer Devulapalli & Xiangfei Meng, 2016. "Household-Level Economies of Scale in Transportation," Operations Research, INFORMS, vol. 64(6), pages 1372-1387, December.
    14. Franceschetti, Anna & Honhon, Dorothée & Laporte, Gilbert & Woensel, Tom Van & Fransoo, Jan C., 2017. "Strategic fleet planning for city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 19-40.
    15. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
    16. Geunes, Joseph & Shen, Zuo-Jun Max & Emir, Akin, 2007. "Planning and approximation models for delivery route based services with price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 183(1), pages 460-471, November.
    17. Nawei Liu & Fei Xie & Zhenhong Lin & Mingzhou Jin, 2020. "Evaluating national hydrogen refueling infrastructure requirement and economic competitiveness of fuel cell electric long-haul trucks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 477-493, March.
    18. Mehdi Nourinejad & Matthew J. Roorda, 2017. "A continuous approximation model for the fleet composition problem on the rectangular grid," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 373-401, March.
    19. John Gunnar Carlsson & Siyuan Song, 2018. "Coordinated Logistics with a Truck and a Drone," Management Science, INFORMS, vol. 64(9), pages 4052-4069, September.
    20. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:86:y:2020:i:c:p:60-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.