IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v40y2006i8p651-666.html
   My bibliography  Save this article

A model for the fleet sizing of demand responsive transportation services with time windows

Author

Listed:
  • Diana, Marco
  • Dessouky, Maged M.
  • Xia, Nan

Abstract

We study the problem of determining the number of vehicles needed to provide a demand responsive transit service with a predetermined quality for the user in terms of waiting time at the stops and maximum allowed detour. We propose a probabilistic model that requires only the knowledge of the distribution of the demand over the service area and the quality of the service in terms of time windows associated of pickup and delivery nodes. This methodology can be much more effective and straightforward compared to a simulation approach whenever detailed data on demand patterns are not available. Computational results under a fairly broad range of test problems show that our model can provide an estimation of the required size of the fleet in several different scenarios.

Suggested Citation

  • Diana, Marco & Dessouky, Maged M. & Xia, Nan, 2006. "A model for the fleet sizing of demand responsive transportation services with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 651-666, September.
  • Handle: RePEc:eee:transb:v:40:y:2006:i:8:p:651-666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(05)00105-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos F. Daganzo, 1987. "Modeling Distribution Problems with Time Windows: Part I," Transportation Science, INFORMS, vol. 21(3), pages 171-179, August.
    2. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    3. Hall, Randolph W., 1996. "Pickup and delivery systems for overnight carriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 173-187, May.
    4. Daganzo, Carlos F., 1984. "Checkpoint dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 315-327.
    5. Wilson, Nigel H. M. & Hendrickson, Chris, 1980. "Performance models of flexibly routed transportation services," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 67-78.
    6. A. W. J. Kolen & A. H. G. Rinnooy Kan & H. W. J. M. Trienekens, 1987. "Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 35(2), pages 266-273, April.
    7. Newell, Gordon F. & Daganzo, Carlos F., 1986. "Design of multiple-vehicle delivery tours--I a ring-radial network," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 345-363, October.
    8. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    9. David M. Stein, 1978. "An Asymptotic, Probabilistic Analysis of a Routing Problem," Mathematics of Operations Research, INFORMS, vol. 3(2), pages 89-101, May.
    10. Daganzo, Carlos F., 1984. "The length of tours in zones of different shapes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 135-145, April.
    11. Shyue Koong Chang & Paul M. Schonfeld, 1991. "Optimization Models for Comparing Conventional and Subscription Bus Feeder Services," Transportation Science, INFORMS, vol. 25(4), pages 281-298, November.
    12. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    13. Langevin, André & Soumis, François, 1989. "Design of multiple-vehicle delivery tours satisfying time constraints," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 123-138, April.
    14. Palmer, Kurt & Dessouky, Maged & Abdelmaguid, Tamer, 2004. "Impacts of management practices and advanced technologies on demand responsive transit systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 495-509, August.
    15. Robuste, Francesc & Daganzo, Carlos F. & Souleyrette, Reginald R., 1990. "Implementing vehicle routing models," Transportation Research Part B: Methodological, Elsevier, vol. 24(4), pages 263-286, August.
    16. Aldaihani, Majid M. & Quadrifoglio, Luca & Dessouky, Maged M. & Hall, Randolph, 2004. "Network design for a grid hybrid transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 511-530, August.
    17. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    18. Carlos F. Daganzo, 1984. "The Distance Traveled to Visit N Points with a Maximum of C Stops per Vehicle: An Analytic Model and an Application," Transportation Science, INFORMS, vol. 18(4), pages 331-350, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandra, Shailesh & Quadrifoglio, Luca, 2013. "A model for estimating the optimal cycle length of demand responsive feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 1-16.
    2. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    3. Pei, Mingyang & Lin, Peiqun & Du, Jun & Li, Xiaopeng & Chen, Zhiwei, 2021. "Vehicle dispatching in modular transit networks: A mixed-integer nonlinear programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    4. Figliozzi, Miguel Andres, 2009. "Planning approximations to the average length of vehicle routing problems with time window constraints," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 438-447, May.
    5. Dai, Rongjian & Ding, Chuan & Gao, Jian & Wu, Xinkai & Yu, Bin, 2022. "Optimization and evaluation for autonomous taxi ride-sharing schedule and depot location from the perspective of energy consumption," Applied Energy, Elsevier, vol. 308(C).
    6. Giovanni Pantuso & Kjetil Fagerholt & Stein W. Wallace, 2016. "Uncertainty in Fleet Renewal: A Case from Maritime Transportation," Transportation Science, INFORMS, vol. 50(2), pages 390-407, May.
    7. Nguyen-Hoang, Phuong & Yeung, Ryan, 2010. "What is paratransit worth?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 841-853, December.
    8. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    9. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    10. Tsubouchi, Kota & Yamato, Hiroyuki & Hietaka, Kazuo, 2009. "A research on the new Demand Responsive Transit service in Japan," 50th Annual Transportation Research Forum, Portland, Oregon, March 16-18, 2009 207730, Transportation Research Forum.
    11. Xuemei Zhou & Guohui Wei & Yunbo Zhang & Qianlin Wang & Huanwu Guo, 2023. "Optimizing Multi-Vehicle Demand-Responsive Bus Dispatching: A Real-Time Reservation-Based Approach," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    12. Lu, Chang & Wu, Yuehui & Yu, Shanchuan, 2022. "A Sample Average Approximation Approach for the Stochastic Dial-A-Ride Problem on a Multigraph with User Satisfaction," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1031-1044.
    13. Mathew, Tom V. & Khasnabis, Snehamay & Mishra, Sabyasachee, 2010. "Optimal resource allocation among transit agencies for fleet management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 418-432, July.
    14. Rahimi, Mahour & Amirgholy, Mahyar & Gonzales, Eric J., 2018. "System modeling of demand responsive transportation services: Evaluating cost efficiency of service and coordinated taxi usage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 66-83.
    15. Ngo, Huan Hoang & Shah, Rohan & Mishra, Sabyasachee, 2018. "Optimal asset management strategies for mixed transit fleet," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 103-116.
    16. Marković, Nikola & Kim, Myungseob (Edward) & Schonfeld, Paul, 2016. "Statistical and machine learning approach for planning dial-a-ride systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 41-55.
    17. Gonzales, Eric J., 2016. "Demand responsive transit systems with time-dependent demand: User equilibrium, system optimum, and management strategyAuthor-Name: Amirgholy, Mahyar," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 234-252.
    18. Hai Wang, 2019. "Routing and Scheduling for a Last-Mile Transportation System," Service Science, INFORMS, vol. 53(1), pages 131-147, February.
    19. Neven, An & Braekers, Kris & Declercq, Katrien & Wets, Geert & Janssens, Davy & Bellemans, Tom, 2015. "Assessing the impact of different policy decisions on the resource requirements of a Demand Responsive Transport system for persons with disabilities," Transport Policy, Elsevier, vol. 44(C), pages 48-57.
    20. Di Huang & Weiping Tong & Lumeng Wang & Xun Yang, 2019. "An Analytical Model for the Many-to-One Demand Responsive Transit Systems," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    21. Kirchler, Dominik & Wolfler Calvo, Roberto, 2013. "A Granular Tabu Search algorithm for the Dial-a-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 120-135.
    22. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    23. Konrad Steiner & Stefan Irnich, 2018. "Strategic Planning for Integrated Mobility-on-Demand and Urban Public Bus Networks," Working Papers 1819, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    24. Braekers, Kris & Caris, An & Janssens, Gerrit K., 2014. "Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 166-186.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jabali, Ola & Gendreau, Michel & Laporte, Gilbert, 2012. "A continuous approximation model for the fleet composition problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1591-1606.
    2. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    3. Zhao, Jiamin & Dessouky, Maged, 2008. "Service capacity design problems for mobility allowance shuttle transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 135-146, February.
    4. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    5. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    6. Lei, Chao & Ouyang, Yanfeng, 2018. "Continuous approximation for demand balancing in solving large-scale one-commodity pickup and delivery problems," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 90-109.
    7. Ellegood, William A. & Campbell, James F. & North, Jeremy, 2015. "Continuous approximation models for mixed load school bus routing," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 182-198.
    8. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    9. Franceschetti, Anna & Honhon, Dorothée & Laporte, Gilbert & Woensel, Tom Van & Fransoo, Jan C., 2017. "Strategic fleet planning for city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 19-40.
    10. Novaes, Antonio G. N. & Graciolli, Odacir D., 1999. "Designing multi-vehicle delivery tours in a grid-cell format," European Journal of Operational Research, Elsevier, vol. 119(3), pages 613-634, December.
    11. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    12. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    13. Kim, Myungseob (Edward) & Schonfeld, Paul, 2015. "Maximizing net benefits for conventional and flexible bus services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 116-133.
    14. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    15. del Castillo, Jose M., 1998. "A heuristic for the traveling salesman problem based on a continuous approximation," Transportation Research Part B: Methodological, Elsevier, vol. 33(2), pages 123-152, April.
    16. Ouyang, Yanfeng, 2007. "Design of vehicle routing zones for large-scale distribution systems," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1079-1093, December.
    17. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    18. (Edward) Kim, Myungseob & Levy, Joshua & Schonfeld, Paul, 2019. "Optimal zone sizes and headways for flexible-route bus services," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 67-81.
    19. Estrada, Miquel & Roca-Riu, Mireia, 2017. "Stakeholder’s profitability of carrier-led consolidation strategies in urban goods distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 165-188.
    20. Chandra, Shailesh & Quadrifoglio, Luca, 2013. "A model for estimating the optimal cycle length of demand responsive feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 1-16.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:40:y:2006:i:8:p:651-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.