IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v29y2007i4p693-709.html
   My bibliography  Save this article

Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change

Author

Listed:
  • Adeyemi, Olutomi I.
  • Hunt, Lester C.

Abstract

The industrial sector embodies a multifaceted production process consequently modelling the ‘derived demand’ for energy is a complex issue; made all the more difficult by the need to capture the effect of technical progress of the capital stock. This paper is an exercise in econometric modelling of industrial energy demand using panel data for 15 OECD countries over the period 1962 – 2003 exploring the issue of energy-saving technical change and asymmetric price responses. Although difficult to determine precisely, it is tentatively concluded that the preferred specification for OECD industrial energy demand incorporates asymmetric price responses but not exogenous energysaving technical change.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Adeyemi, Olutomi I. & Hunt, Lester C., 2007. "Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change," Energy Economics, Elsevier, vol. 29(4), pages 693-709, July.
  • Handle: RePEc:eee:eneeco:v:29:y:2007:i:4:p:693-709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(07)00009-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hunt, Lester C. & Judge, Guy & Ninomiya, Yasushi, 2003. "Underlying trends and seasonality in UK energy demand: a sectoral analysis," Energy Economics, Elsevier, vol. 25(1), pages 93-118, January.
    2. Dargay, Joyce & Gately, Dermot, 1997. "The demand for transportation fuels: Imperfect price-reversibility?," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 71-82, February.
    3. Stephen Casler, 1997. "Applied production theory: explicit, flexible, and general functional forms," Applied Economics, Taylor & Francis Journals, vol. 29(11), pages 1483-1492.
    4. Jones, Clifton T, 1994. "Accounting for technical progress in aggregate energy demand," Energy Economics, Elsevier, vol. 16(4), pages 245-252, October.
    5. Kaddour Hadri, 2000. "Testing for stationarity in heterogeneous panel data," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 148-161.
    6. Prosser, Richard D., 1985. "Demand elasticities in OECD : Dynamical aspects," Energy Economics, Elsevier, vol. 7(1), pages 9-12, January.
    7. Lester C. Hunt & Guy Judge & Yasushi Ninomiya, 2003. "Modelling underlying energy demand trends," Chapters, in: Lester C. Hunt (ed.), Energy in a Competitive Market, chapter 9, Edward Elgar Publishing.
    8. Bruce Traill & David Colman & Trevor Young, 1978. "Estimating Irreversible Supply Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 60(3), pages 528-531.
    9. Rudolf Wolffram, 1971. "Positivistic Measures of Aggregate Supply Elasticities: Some New Approaches—Some Critical Notes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 53(2), pages 356-359.
    10. James M. Griffin & Craig T. Schulman, 2005. "Price Asymmetry in Energy Demand Models: A Proxy for Energy-Saving Technical Change?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-22.
    11. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    12. Dargay, Joyce & Gately, Dermot, 1995. "The imperfect price reversibility of non-transport oil demand in the OECD," Energy Economics, Elsevier, vol. 17(1), pages 59-71, January.
    13. Kamerschen, David R. & Porter, David V., 2004. "The demand for residential, industrial and total electricity, 1973-1998," Energy Economics, Elsevier, vol. 26(1), pages 87-100, January.
    14. Beenstock, M. & Willcocks, P., 1981. "Energy consumption and economic activity in industrialized countries : The dynamic aggregate time series relationship," Energy Economics, Elsevier, vol. 3(4), pages 225-232, October.
    15. Maddala, G S & Wu, Shaowen, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 631-652, Special I.
    16. John Dimitropoulos & Lester Hunt & Guy Judge, 2005. "Estimating underlying energy demand trends using UK annual data," Applied Economics Letters, Taylor & Francis Journals, vol. 12(4), pages 239-244.
    17. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    18. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    19. Lester C. Hunt (ed.), 2003. "Energy in a Competitive Market," Books, Edward Elgar Publishing, number 2519.
    20. James P. Houck, 1977. "An Approach to Specifying and Estimating Nonreversible Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 59(3), pages 570-572.
    21. Kenneth B. Medlock III & Ronald Soligo, 2001. "Economic Development and End-Use Energy Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-105.
    22. Dermot Gately & Hiliard G. Huntington, 2002. "The Asymmetric Effects of Changes in Price and Income on Energy and Oil Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 19-55.
    23. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    24. Hillard G. Huntington, 2006. "A Note on Price Asymmetry as Induced Technical Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-8.
    25. Jones, Clifton T, 1995. "A Dynamic Analysis of Interfuel Substitution in U.S. Industrial Energy Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 459-465, October.
    26. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    27. Philip R. Vande Kamp & Harry M. Kaiser, 1999. "Irreversibility in Advertising-Demand Response Functions: An Application to Milk," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(2), pages 385-396.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adeyemi, Olutomi I. & Hunt, Lester C., 2014. "Accounting for asymmetric price responses and underlying energy demand trends in OECD industrial energy demand," Energy Economics, Elsevier, vol. 45(C), pages 435-444.
    2. Adofo, Yaw Osei & Evans, Joanne & Hunt, Lester Charles, 2013. "How sensitive to time period sampling is the asymmetric price response specification in energy demand modelling?," Energy Economics, Elsevier, vol. 40(C), pages 90-109.
    3. Adeyemi, Olutomi I. & Broadstock, David C. & Chitnis, Mona & Hunt, Lester C. & Judge, Guy, 2010. "Asymmetric price responses and the underlying energy demand trend: Are they substitutes or complements? Evidence from modelling OECD aggregate energy demand," Energy Economics, Elsevier, vol. 32(5), pages 1157-1164, September.
    4. Sharimakin, Akinsehinwa, 2021. "Modelling asymmetric price responses of industrial energy demand with a dynamic hierarchical model," Energy Economics, Elsevier, vol. 98(C).
    5. Agnolucci, Paolo, 2009. "The energy demand in the British and German industrial sectors: Heterogeneity and common factors," Energy Economics, Elsevier, vol. 31(1), pages 175-187, January.
    6. Olaniyan, Monisola J. & Evans, Joanne, 2014. "The importance of engaging residential energy customers' hearts and minds," Energy Policy, Elsevier, vol. 69(C), pages 273-284.
    7. Lee, Chien-Chiang & Chiu, Yi-Bin, 2013. "Modeling OECD energy demand: An international panel smooth transition error-correction model," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 372-383.
    8. Huntington, Hillard G. & Barrios, James J. & Arora, Vipin, 2019. "Review of key international demand elasticities for major industrializing economies," Energy Policy, Elsevier, vol. 133(C).
    9. Costantini, Valeria & Martini, Chiara, 2010. "The causality between energy consumption and economic growth: A multi-sectoral analysis using non-stationary cointegrated panel data," Energy Economics, Elsevier, vol. 32(3), pages 591-603, May.
    10. Salisu, Afees A. & Ayinde, Taofeek O., 2016. "Modeling energy demand: Some emerging issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1470-1480.
    11. Gangopadhyay, Partha & Shankar, Sriram, 2016. "Energy efficiency in the ACI (ASEAN-China-India) countries: is there room for regional policy coordination?," International Journal of Development and Conflict, Gokhale Institute of Politics and Economics, vol. 6(2), pages 121-135.
    12. Hunt, Lester C. & Ryan, David L., 2015. "Economic modelling of energy services: Rectifying misspecified energy demand functions," Energy Economics, Elsevier, vol. 50(C), pages 273-285.
    13. Liddle, Brantley & Sadorsky, Perry, 2020. "How much do asymmetric changes in income and energy prices affect energy demand?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    14. Valeria Costantini & Elena Paglialunga, 2014. "Elasticity of substitution in capital-energy relationships: how central is a sector-based panel estimation approach?," SEEDS Working Papers 1314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    15. Dilaver, Zafer & Hunt, Lester C., 2021. "Modelling U.S. gasoline demand: A structural time series analysis with asymmetric price responses," Energy Policy, Elsevier, vol. 156(C).
    16. José Abraham López Machuca & Jorge Eduardo Mendoza Cota, 2017. "Salarios, desempleo y productividad laboral en la industria manufacturera mexicana. (Wage, Unemployment and Labor Productivity in the Mexican Manufacturing Industry)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 185-228, October.
    17. BADALYAN, Gohar & HERZFELD, Thomas & RAJCANIOVA, Miroslava, 2014. "Transport Infrastructure And Economic Growth: Panel Data Approach For Armenia, Georgia And Turkey," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 17(2), pages 1-10, October.
    18. Ronald MacDonald & Flávio Vieira, "undated". "A panel data investigation of real exchange rate misalignment and growth," Working Papers 2010_13, Business School - Economics, University of Glasgow.
    19. Christos Kollias & Petros Messis, 0. "Are future enlargement candidate countries converging with the EU?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 0, pages 1-21.
    20. Nagmi Moftah Aimer, 2020. "Renewable energy consumption, financial development and economic growth: Evidence from panel data for the Middle East and North African countries," Economics Bulletin, AccessEcon, vol. 40(3), pages 2058-2072.

    More about this item

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:29:y:2007:i:4:p:693-709. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.