IDEAS home Printed from
   My bibliography  Save this article

Price and expenditure elasticities of residential energy demand during urbanization: An empirical analysis based on the household-level survey data in China


  • Sun, Chuanwang
  • Ouyang, Xiaoling


Urbanization, one of the most obvious characteristics of economic growth in China, has an apparent “lock-in effect” on residential energy consumption pattern. It is expected that residential sector would become a major force that drives China's energy consumption after urbanization process. We estimate price and expenditure elasticities of residential energy demand using data from China's Residential Energy Consumption Survey (CRECS) that covers households at different income levels and from different regional and social groups. Empirical results from the Almost Ideal Demand System model are in accordance with the basic expectations: the demands for electricity, natural gas and transport fuels are inelastic in the residential sector due to the unreasonable pricing mechanism. We further investigate the sensitivities of different income groups to prices of the three types of energy. Policy simulations indicate that rationalizing energy pricing mechanism is an important guarantee for energy sustainable development during urbanization. Finally, we put forward suggestions on energy pricing reform in the residential sector based on characteristics of China's undergoing urbanization process and the current energy consumption situations.

Suggested Citation

  • Sun, Chuanwang & Ouyang, Xiaoling, 2016. "Price and expenditure elasticities of residential energy demand during urbanization: An empirical analysis based on the household-level survey data in China," Energy Policy, Elsevier, vol. 88(C), pages 56-63.
  • Handle: RePEc:eee:enepol:v:88:y:2016:i:c:p:56-63 DOI: 10.1016/j.enpol.2015.10.012

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Sun, Chuanwang & Lin, Boqiang, 2013. "Reforming residential electricity tariff in China: Block tariffs pricing approach," Energy Policy, Elsevier, vol. 60(C), pages 741-752.
    2. Li, Aijun & Du, Nan & Wei, Qian, 2014. "The cross-country implications of alternative climate policies," Energy Policy, Elsevier, vol. 72(C), pages 155-163.
    3. Ernst R. Berndt & G. Campbell Watkins, 1977. "Demand for Natural Gas: Residential and Commercial Markets in Ontario and British Columbia," Canadian Journal of Economics, Canadian Economics Association, vol. 10(1), pages 97-111, February.
    4. Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
    5. Adriaan Kalwij & Rob Alessie & Peter Fontein, 1998. "Household commodity demand and demographics in the Netherlands: A microeconometric analysis," Journal of Population Economics, Springer;European Society for Population Economics, vol. 11(4), pages 551-577.
    6. S. M. Tinic & B. M. Harnden & C. T. L. Janssen, 1973. "Estimation of Rural Demand for Natural Gas," Management Science, INFORMS, vol. 20(4-Part-II), pages 604-616, December.
    7. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    8. World Bank, 2009. "World Development Indicators 2009," World Bank Publications, The World Bank, number 4367.
    9. Silvia Tiezzi, 2002. "Environmental defensive expenditures and households behaviour in Italy," Applied Economics, Taylor & Francis Journals, vol. 34(16), pages 2053-2061.
    10. Maddala, G S, et al, 1997. "Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 90-100, January.
    11. Li, Aijun & Lin, Boqiang, 2013. "Comparing climate policies to reduce carbon emissions in China," Energy Policy, Elsevier, vol. 60(C), pages 667-674.
    12. Wang, Xiaohua & Feng, Zhengmin & Gao, xingfeng & Jiang, Kui, 1999. "On household energy consumption for rural development: a study on Yangzhong county of China," Energy, Elsevier, vol. 24(6), pages 493-500.
    13. Maréchal, Kevin, 2010. "Not irrational but habitual: The importance of "behavioural lock-in" in energy consumption," Ecological Economics, Elsevier, vol. 69(5), pages 1104-1114, March.
    14. Murata, Akinobu & Kondou, Yasuhiko & Hailin, Mu & Weisheng, Zhou, 2008. "Electricity demand in the Chinese urban household-sector," Applied Energy, Elsevier, vol. 85(12), pages 1113-1125, December.
    15. Holtedahl, Pernille & Joutz, Frederick L., 2004. "Residential electricity demand in Taiwan," Energy Economics, Elsevier, vol. 26(2), pages 201-224, March.
    16. Silk, Julian I. & Joutz, Frederick L., 1997. "Short and long-run elasticities in US residential electricity demand: a co-integration approach," Energy Economics, Elsevier, vol. 19(4), pages 493-513, October.
    17. Du, Gang & Lin, Wei & Sun, Chuanwang & Zhang, Dingzhong, 2015. "Residential electricity consumption after the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 157(C), pages 276-283.
    18. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    19. Catherine Halbrendt & Conrado Gempesaw & Dimphna Dolk-Etz & Francis Tuan, 1994. "Rural Chinese Food Consumption: The Case of Guangdong," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 794-799.
    20. Dianshu, Feng & Sovacool, Benjamin K. & Minh Vu, Khuong, 2010. "The barriers to energy efficiency in China: Assessing household electricity savings and consumer behavior in Liaoning Province," Energy Policy, Elsevier, vol. 38(2), pages 1202-1209, February.
    21. Narayan, Paresh Kumar & Smyth, Russell & Prasad, Arti, 2007. "Electricity consumption in G7 countries: A panel cointegration analysis of residential demand elasticities," Energy Policy, Elsevier, vol. 35(9), pages 4485-4494, September.
    22. Paltsev, Sergey & Zhang, Danwei, 2015. "Natural gas pricing reform in China: Getting closer to a market system?," Energy Policy, Elsevier, vol. 86(C), pages 43-56.
    23. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
    24. Filippini, Massimo, 1995. "Electricity demand by time of use An application of the household AIDS model," Energy Economics, Elsevier, vol. 17(3), pages 197-204, July.
    25. Du, Gang & Sun, Chuanwang & Fang, Zhongnan, 2015. "Evaluating the Atkinson index of household energy consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1080-1087.
    26. Ngui, Dianah & Mutua, John & Osiolo, Hellen & Aligula, Eric, 2011. "Household energy demand in Kenya: An application of the linear approximate almost ideal demand system (LA-AIDS)," Energy Policy, Elsevier, vol. 39(11), pages 7084-7094.
    27. Gundimeda, Haripriya & Kohlin, Gunnar, 2008. "Fuel demand elasticities for energy and environmental policies: Indian sample survey evidence," Energy Economics, Elsevier, vol. 30(2), pages 517-546, March.
    28. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    29. Zhou, Shaojie & Teng, Fei, 2013. "Estimation of urban residential electricity demand in China using household survey data," Energy Policy, Elsevier, vol. 61(C), pages 394-402.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:enepol:v:114:y:2018:i:c:p:591-597 is not listed on IDEAS
    2. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    3. repec:eee:enepol:v:113:y:2018:i:c:p:332-341 is not listed on IDEAS
    4. repec:eee:enepol:v:109:y:2017:i:c:p:208-217 is not listed on IDEAS
    5. repec:eee:enepol:v:110:y:2017:i:c:p:79-89 is not listed on IDEAS
    6. repec:spr:nathaz:v:89:y:2017:i:2:d:10.1007_s11069-017-2990-4 is not listed on IDEAS
    7. repec:gam:jeners:v:10:y:2017:i:5:p:600-:d:97192 is not listed on IDEAS
    8. Khanna, Nina Zheng & Guo, Jin & Zheng, Xinye, 2016. "Effects of demand side management on Chinese household electricity consumption: Empirical findings from Chinese household survey," Energy Policy, Elsevier, vol. 95(C), pages 113-125.
    9. repec:eee:enepol:v:113:y:2018:i:c:p:633-642 is not listed on IDEAS
    10. Daniel de Abreu Pereira Uhr & Júlia Gallego Ziero Uhr, André Luis Squarize Chagas, 2017. "Estimation of price and income elasticities for the Brazilian household electricity demand," Working Papers, Department of Economics 2017_12, University of São Paulo (FEA-USP).
    11. Sun, Chuanwang & Yuan, Xiang & Yao, Xin, 2016. "Social acceptance towards the air pollution in China: Evidence from public's willingness to pay for smog mitigation," Energy Policy, Elsevier, vol. 92(C), pages 313-324.
    12. Sun, Chuanwang & Zhu, Xiting & Meng, Xiaochun, 2016. "Post-Fukushima public acceptance on resuming the nuclear power program in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 685-694.
    13. repec:eee:enepol:v:113:y:2018:i:c:p:20-27 is not listed on IDEAS
    14. Xiaoyang Sun & Baosheng Zhang & Xu Tang & Benjamin C. McLellan & Mikael Höök, 2016. "Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System," Energies, MDPI, Open Access Journal, vol. 9(12), pages 1-20, November.
    15. Zhang, Ming & Su, Bin, 2016. "Assessing China's rural household energy sustainable development using improved grouped principal component method," Energy, Elsevier, vol. 113(C), pages 509-514.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:88:y:2016:i:c:p:56-63. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.