IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p905-d99876.html
   My bibliography  Save this article

PV, Wind and Storage Integration on Small Islands for the Fulfilment of the 50-50 Renewable Electricity Generation Target

Author

Listed:
  • Javier Mendoza-Vizcaino

    (Centre d’Innovaciò Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d’Enginyeria Elèctrica, ETS d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain)

  • Andreas Sumper

    (Centre d’Innovaciò Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d’Enginyeria Elèctrica, ETS d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain)

  • Samuel Galceran-Arellano

    (Centre d’Innovaciò Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d’Enginyeria Elèctrica, ETS d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain)

Abstract

Decarbonisation in the generation of electricity is necessary to reduce fossil fuel consumption, the pollution emitted and to meet the Energy Technology Perspectives 2 ° C Scenario (2DS) targets. Small islands are not exempt from this target, so this study’s emphasis is placed on a 50-50 target: to reduce the fossil fuel consumption through electricity generation from Renewable Energy Sources (RES) to cover 50% of all electric demand by 2050 on small islands. Using Cozumel Island, Mexico, as a case study, this analysis will be based on three factors: economical, technical, and land-use possibilities of integrating Renewable Energy Technologies (RETs) into the existing electrical grid. This analysis is made through long-term statistical models. A deterministic methodology is used to perform time-series simulations. The selection of the best system was made on the basis of a Dimensional Statistical Variable (DSV) through primary and secondary category rankings. The presented methodology determines the best systems for capturing the initial capital cost and competitiveness of this new proposal compared with the current system of electricity generation on the Island, and can be applied to small islands as well. According to the results, all systems proposed are able to completely satisfy the renewable electricity needed by 2050 in all scenarios. From the 12 system proposals that were compared, two systems, System 2 and System 7, were chosen as eligible systems to be installed. The Levelized Cost of Energy (LCOE) result for System 2 was 0.2518 US$/kWh and for System 7 was 0.2265 US$/kWh by 2018 in the Base Scenario. Meanwhile, the Internal Rate of Return (IRR) value fluctuated from 17.2% for System 2 to 31% for System 7.

Suggested Citation

  • Javier Mendoza-Vizcaino & Andreas Sumper & Samuel Galceran-Arellano, 2017. "PV, Wind and Storage Integration on Small Islands for the Fulfilment of the 50-50 Renewable Electricity Generation Target," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:905-:d:99876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.
    2. Dornan, Matthew & Shah, Kalim U., 2016. "Energy policy, aid, and the development of renewable energy resources in Small Island Developing States," Energy Policy, Elsevier, vol. 98(C), pages 759-767.
    3. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    4. Prasad, Ravita D. & Raturi, Atul, 2017. "Grid electricity for Fiji islands: Future supply options and assessment of demand trends," Energy, Elsevier, vol. 119(C), pages 860-871.
    5. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    6. Blechinger, P. & Cader, C. & Bertheau, P. & Huyskens, H. & Seguin, R. & Breyer, C., 2016. "Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands," Energy Policy, Elsevier, vol. 98(C), pages 674-687.
    7. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    8. Mendoza-Vizcaino, Javier & Sumper, Andreas & Sudria-Andreu, Antoni & Ramirez, J.M., 2016. "Renewable technologies for generation systems in islands and their application to Cozumel Island, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 348-361.
    9. Nelson, James & Johnston, Josiah & Mileva, Ana & Fripp, Matthias & Hoffman, Ian & Petros-Good, Autumn & Blanco, Christian & Kammen, Daniel M., 2012. "High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures," Energy Policy, Elsevier, vol. 43(C), pages 436-447.
    10. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    11. Timilsina, Govinda R. & Shah, Kalim U., 2016. "Filling the gaps: Policy supports and interventions for scaling up renewable energy development in Small Island Developing States," Energy Policy, Elsevier, vol. 98(C), pages 653-662.
    12. Romano, Antonio A. & Scandurra, Giuseppe & Carfora, Alfonso & Pansini, Rosaria V., 2016. "Assessing the determinants of SIDS' pattern toward sustainability: A statistical analysis," Energy Policy, Elsevier, vol. 98(C), pages 688-699.
    13. Yue, Cheng-Dar & Chen, Chung-Sheng & Lee, Yu-Chen, 2016. "Integration of optimal combinations of renewable energy sources into the energy supply of Wang-An Island," Renewable Energy, Elsevier, vol. 86(C), pages 930-942.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Curto, Domenico & Favuzza, Salvatore & Franzitta, Vincenzo & Guercio, Andrea & Amparo Navarro Navia, Milagros & Telaretti, Enrico & Zizzo, Gaetano, 2022. "Grid Stability Improvement Using Synthetic Inertia by Battery Energy Storage Systems in Small Islands," Energy, Elsevier, vol. 254(PC).
    2. Giovanni Artale & Giuseppe Caravello & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Salvatore Guaiana & Ninh Nguyen Quang & Marco Palmeri & Nicola Panzavecchia & Giovanni Tinè, 2020. "A Virtual Tool for Load Flow Analysis in a Micro-Grid," Energies, MDPI, vol. 13(12), pages 1-26, June.
    3. Xiuqiang He & Hua Geng & Geng Yang & Xin Zou, 2018. "Coordinated Control for Large-Scale Wind Farms with LCC-HVDC Integration," Energies, MDPI, vol. 11(9), pages 1-19, August.
    4. Mendoza-Vizcaino, Javier & Raza, Muhammad & Sumper, Andreas & Díaz-González, Francisco & Galceran-Arellano, Samuel, 2019. "Integral approach to energy planning and electric grid assessment in a renewable energy technology integration for a 50/50 target applied to a small island," Applied Energy, Elsevier, vol. 233, pages 524-543.
    5. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiahong & Mei, Chao & Wang, Hao & Shao, Weiwei & Xiang, Chenyao, 2018. "Powering an island system by renewable energy—A feasibility analysis in the Maldives," Applied Energy, Elsevier, vol. 227(C), pages 18-27.
    2. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.
    3. Meschede, Henning & Dunkelberg, Heiko & Stöhr, Fabian & Peesel, Ron-Hendrik & Hesselbach, Jens, 2017. "Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods," Energy, Elsevier, vol. 128(C), pages 86-100.
    4. Dorotić, Hrvoje & Doračić, Borna & Dobravec, Viktorija & Pukšec, Tomislav & Krajačić, Goran & Duić, Neven, 2019. "Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 109-124.
    5. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    6. Calise, F. & Di Fraia, S. & Macaluso, A. & Massarotti, N. & Vanoli, L., 2018. "A geothermal energy system for wastewater sludge drying and electricity production in a small island," Energy, Elsevier, vol. 163(C), pages 130-143.
    7. Meza, Carlos Germán & Zuluaga Rodríguez, Catalina & D'Aquino, Camila Agner & Amado, Nilton Bispo & Rodrigues, Alcantaro & Sauer, Ildo Luis, 2019. "Toward a 100% renewable island: A case study of Ometepe's energy mix," Renewable Energy, Elsevier, vol. 132(C), pages 628-648.
    8. Alessandro Corsini & Eileen Tortora, 2018. "Sea-Water Desalination for Load Levelling of Gen-Sets in Small Off-Grid Islands," Energies, MDPI, vol. 11(8), pages 1-18, August.
    9. Walter Leal Filho & Abdul-Lateef Balogun & Dinesh Surroop & Amanda Lange Salvia & Kapil Narula & Chunlan Li & Julian David Hunt & Andrea Gatto & Ayyoob Sharifi & Haibo Feng & Stella Tsani & Hossein Az, 2022. "Realising the Potential of Renewable Energy as a Tool for Energy Security in Small Island Developing States," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    10. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    11. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    12. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    13. Manuel Uche-Soria & Carlos Rodríguez-Monroy, 2018. "Special Regulation of Isolated Power Systems: The Canary Islands, Spain," Sustainability, MDPI, vol. 10(7), pages 1-20, July.
    14. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    15. Maurizio Filippo Acciarri & Silvia Checola & Paolo Galli & Giacomo Magatti & Silvana Stefani, 2021. "Water Resource Management and Sustainability: A Case Study in Faafu Atoll in the Republic of Maldives," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    16. Xu, Yifan & Ji, Mengmeng & Klemeš, Jiří Jaromír & Tao, Hengcong & Zhu, Baikang & Varbanov, Petar Sabev & Yuan, Meng & Wang, Bohong, 2023. "Optimal renewable energy export strategies of islands: Hydrogen or electricity?," Energy, Elsevier, vol. 269(C).
    17. Groppi, Daniele & Pfeifer, Antun & Garcia, Davide Astiaso & Krajačić, Goran & Duić, Neven, 2021. "A review on energy storage and demand side management solutions in smart energy islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Praene, Jean Philippe & Payet, Mahéva & Bénard-Sora, Fiona, 2018. "Sustainable transition in small island developing states: Assessing the current situation," Utilities Policy, Elsevier, vol. 54(C), pages 86-91.
    19. Mendoza-Vizcaino, Javier & Raza, Muhammad & Sumper, Andreas & Díaz-González, Francisco & Galceran-Arellano, Samuel, 2019. "Integral approach to energy planning and electric grid assessment in a renewable energy technology integration for a 50/50 target applied to a small island," Applied Energy, Elsevier, vol. 233, pages 524-543.
    20. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:905-:d:99876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.