IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4310-d256204.html
   My bibliography  Save this article

Logarithmic Mean Divisia Index Decomposition of CO 2 Emissions from Urban Passenger Transport: An Empirical Study of Global Cities from 1960–2001

Author

Listed:
  • Meiting Tu

    (College of Transportation Engineering, Tongji University, Shanghai 201804, China
    Key Laboratory of Road Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
    Laboratory LIVIC, IFSTTAR, 25 allée des Marronniers, 78000 Versailles, France)

  • Ye Li

    (College of Transportation Engineering, Tongji University, Shanghai 201804, China
    Key Laboratory of Road Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

  • Lei Bao

    (Seazen Holdings Co., Ltd., No.6 Lane 388, Zhongjiang Road, Putuo District, Shanghai 200062, China)

  • Yuao Wei

    (China Merchants Bank, 686, Lai’an road, Shanghai 201201, China)

  • Olivier Orfila

    (Laboratory LIVIC, IFSTTAR, 25 allée des Marronniers, 78000 Versailles, France)

  • Wenxiang Li

    (College of Transportation Engineering, Tongji University, Shanghai 201804, China
    Key Laboratory of Road Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

  • Dominique Gruyer

    (Laboratory LIVIC, IFSTTAR, 25 allée des Marronniers, 78000 Versailles, France)

Abstract

The urban transport sector has become one of the major contributors to global CO 2 emissions. This paper investigates the driving forces of changes in CO 2 emissions from the passenger transport sectors in different cities, which is helpful for formulating effective carbon-reduction policies and strategies. The logarithmic mean Divisia index (LMDI) method is used to decompose the CO 2 emissions changes into five driving determinants: Urbanization level, motorization level, mode structure, energy intensity, and energy mix. First, the urban transport CO 2 emissions between 1960 and 2001 from 46 global cities are calculated. Then, the multiplicative decomposition results for megacities (London, New York, Paris, and Tokyo) are compared with those of other cities. Moreover, additive decomposition analyses of the 4 megacities are conducted to explore the driving forces of changes in CO 2 emissions from the passenger transport sectors in these megacities between 1960 and 2001. Based on the decomposition results, some effective carbon-reduction strategies can be formulated for developing cities experiencing rapid urbanization and motorization. The main suggestions are as follows: (i) Rational land use, such as transit-oriented development, is a feasible way to control the trip distance per capita; (ii) fuel economy policies and standards formulated when there are oil crisis are effective ways to suppress the increase of CO 2 emissions, and these changes should not be abandoned when oil prices fall; and (iii) cities with high population densities should focus on the development of public and non-motorized transport.

Suggested Citation

  • Meiting Tu & Ye Li & Lei Bao & Yuao Wei & Olivier Orfila & Wenxiang Li & Dominique Gruyer, 2019. "Logarithmic Mean Divisia Index Decomposition of CO 2 Emissions from Urban Passenger Transport: An Empirical Study of Global Cities from 1960–2001," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4310-:d:256204
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4310/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nakamura, Kazuki & Hayashi, Yoshitsugu, 2013. "Strategies and instruments for low-carbon urban transport: An international review on trends and effects," Transport Policy, Elsevier, vol. 29(C), pages 264-274.
    2. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    3. Adam Millard‐Ball & Lee Schipper, 2011. "Are We Reaching Peak Travel? Trends in Passenger Transport in Eight Industrialized Countries," Transport Reviews, Taylor & Francis Journals, vol. 31(3), pages 357-378.
    4. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    5. Bristow, Abigail L. & Tight, Miles & Pridmore, Alison & May, Anthony D., 2008. "Developing pathways to low carbon land-based passenger transport in Great Britain by 2050," Energy Policy, Elsevier, vol. 36(9), pages 3427-3435, September.
    6. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    7. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    8. Sperling, Daniel & Gordon, Deborah, 2009. "Two Billion Cars: Driving Toward Sustainability," OUP Catalogue, Oxford University Press, number 9780195376647.
    9. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    10. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    11. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
    12. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Why have CO2 emissions increased in the transport sector in Asia ? underlying factors and policy options," Policy Research Working Paper Series 5098, The World Bank.
    13. Yeongjun Yeo & Dongnyok Shim & Jeong-Dong Lee & Jörn Altmann, 2015. "Driving Forces of CO 2 Emissions in Emerging Countries: LMDI Decomposition Analysis on China and India’s Residential Sector," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    14. Grant, Don & Jorgenson, Andrew K. & Longhofer, Wesley, 2016. "How organizational and global factors condition the effects of energy efficiency on CO2 emission rebounds among the world's power plants," Energy Policy, Elsevier, vol. 94(C), pages 89-93.
    15. Creutzig, Felix & McGlynn, Emily & Minx, Jan & Edenhofer, Ottmar, 2011. "Climate policies for road transport revisited (I): Evaluation of the current framework," Energy Policy, Elsevier, vol. 39(5), pages 2396-2406, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    2. Alajmi, Reema Gh, 2021. "Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI," Energy Policy, Elsevier, vol. 156(C).
    3. Cosimo Magazzino & Parisa Pakrooh & Mohammad Zoynul Abedin, 2024. "A decomposition and decoupling analysis for carbon dioxide emissions: evidence from OECD countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28539-28566, November.
    4. Shiming Liao & Dong Wang & Ting Ren & Xuemin Liu, 2022. "Heterogeneity and Decomposition Analysis of Manufacturing Carbon Dioxide Emissions in China’s Post-Industrial Innovative Megacity Shenzhen," IJERPH, MDPI, vol. 19(23), pages 1-19, November.
    5. Yue, Xuanyu & Byrne, Julie, 2024. "Identifying the determinants of carbon emissions of individual airlines around the world," Journal of Air Transport Management, Elsevier, vol. 115(C).
    6. Shakya, S.R. & Adhikari, R. & Poudel, S. & Rupakheti, M., 2022. "Energy equity as a major driver of energy intensity in South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    7. Daiva Makutėnienė & Dalia Perkumienė & Valdemaras Makutėnas, 2022. "Logarithmic Mean Divisia Index Decomposition Based on Kaya Identity of GHG Emissions from Agricultural Sector in Baltic States," Energies, MDPI, vol. 15(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    2. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    3. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    4. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    5. Wang, Zhiping & Feng, Chao & Chen, Jinyu & Huang, Jianbai, 2017. "The driving forces of material use in China: An index decomposition analysis," Resources Policy, Elsevier, vol. 52(C), pages 336-348.
    6. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    7. Song, Yan & Zhang, Ming & Shan, Cheng, 2019. "Research on the decoupling trend and mitigation potential of CO2 emissions from China's transport sector," Energy, Elsevier, vol. 183(C), pages 837-843.
    8. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    9. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    10. Jennings, Mark & Ó Gallachóir, Brian P. & Schipper, Lee, 2013. "Irish passenger transport: Data refinements, international comparisons, and decomposition analysis," Energy Policy, Elsevier, vol. 56(C), pages 151-164.
    11. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    12. Liu, Xianmei & Peng, Rui & Zhong, Chao & Wang, Mingyue & Guo, Pibin, 2021. "What drives the temporal and spatial differences of CO2 emissions in the transport sector? Empirical evidence from municipalities in China," Energy Policy, Elsevier, vol. 159(C).
    13. Luo, Xiao & Dong, Liang & Dou, Yi & Li, Yan & Liu, Kai & Ren, Jingzheng & Liang, Hanwei & Mai, Xianmin, 2017. "Factor decomposition analysis and causal mechanism investigation on urban transport CO2 emissions: Comparative study on Shanghai and Tokyo," Energy Policy, Elsevier, vol. 107(C), pages 658-668.
    14. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    15. Suyi Kim, 2019. "Decomposition Analysis of Greenhouse Gas Emissions in Korea’s Transportation Sector," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    16. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    17. Isik, Mine & Sarica, Kemal & Ari, Izzet, 2020. "Driving forces of Turkey's transportation sector CO2 emissions: An LMDI approach," Transport Policy, Elsevier, vol. 97(C), pages 210-219.
    18. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
    19. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    20. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4310-:d:256204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.