IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p1957-d219267.html
   My bibliography  Save this article

Assessing the Environmental Quality Resulting from Damages to Human-Nature Interactions Caused by Population Increase: A Systems Thinking Approach

Author

Listed:
  • Fernando Ramos-Quintana

    (Dirección General de Desarrollo Sustentable, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico)

  • Héctor Sotelo-Nava

    (Dirección General de Desarrollo Sustentable, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico)

  • Hugo Saldarriaga-Noreña

    (Centro de Investigaciones Químicas, Instituto de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico)

  • Efraín Tovar-Sánchez

    (Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico)

Abstract

Multiple interactions between population increase-as driving force- and pressure factors can cause damage to human-nature interactions. In this paper, we aim to identify, understand, and assess those interactions that exert effects on environment quality. The assessments of multiple interactions will allow selecting management actions to reduce negative effects, such as the loss of vegetation cover, on the environment. However, multiple interactions hinder the understanding of such complex systems. The relevance of this study is related to the support of the systems thinking approach to achieve two objectives: (1) to build a conceptual framework that facilitates the construction of a network aimed at representing the multiple interactions; (2) to build a closed system for the sake of developing a sustainable environmental management system. Thus, the performance of the implemented management actions is assessed through the feedback loop of the closed system. The proposed conceptual framework and the closed system were applied to the state of Morelos, Mexico. We highlight the following results: the systems thinking approach facilitated the construction of a conceptual framework to build understandable causal network; a set of environmental pathways were derived from the causal network and then combined to define and assess a global environmental state. Environmental pathways are composed of relationships between population increase and pressure variables that exert effects on the environment quality; the feedback loop facilitated the performance analysis of implemented management actions related to natural protected areas. The current results suggest further research to apply this study to diverse systems where multiple interactions between drivers and pressure factors damage human-nature interactions, thus exerting effects on the environmental state.

Suggested Citation

  • Fernando Ramos-Quintana & Héctor Sotelo-Nava & Hugo Saldarriaga-Noreña & Efraín Tovar-Sánchez, 2019. "Assessing the Environmental Quality Resulting from Damages to Human-Nature Interactions Caused by Population Increase: A Systems Thinking Approach," Sustainability, MDPI, vol. 11(7), pages 1-29, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:1957-:d:219267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/1957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/1957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tanzi Smith, 2011. "Using critical systems thinking to foster an integrated approach to sustainability: a proposal for development practitioners," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(1), pages 1-17, February.
    2. Yi Liang & Dongxiao Niu & Haichao Wang & Yan Li, 2017. "Factors Affecting Transportation Sector CO 2 Emissions Growth in China: An LMDI Decomposition Analysis," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
    3. Daniel Hoornweg & Perinaz Bhada-Tata & Chris Kennedy, 2013. "Environment: Waste production must peak this century," Nature, Nature, vol. 502(7473), pages 615-617, October.
    4. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    5. Omann, Ines & Stocker, Andrea & Jäger, Jill, 2009. "Climate change as a threat to biodiversity: An application of the DPSIR approach," Ecological Economics, Elsevier, vol. 69(1), pages 24-31, November.
    6. Wenqi Wang & Yuhong Sun & Jing Wu, 2018. "Environmental Warning System Based on the DPSIR Model: A Practical and Concise Method for Environmental Assessment," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    7. Nuri Cihat Onat & Murat Kucukvar & Anthony Halog & Scott Cloutier, 2017. "Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives," Sustainability, MDPI, vol. 9(5), pages 1-25, April.
    8. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Why have CO2 emissions increased in the transport sector in Asia ? underlying factors and policy options," Policy Research Working Paper Series 5098, The World Bank.
    9. Heidi L. Davidz & Deborah J. Nightingale, 2008. "Enabling systems thinking to accelerate the development of senior systems engineers," Systems Engineering, John Wiley & Sons, vol. 11(1), pages 1-14, March.
    10. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    11. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    12. Nam C. Nguyen & Ockie J. H. Bosch, 2013. "A Systems Thinking Approach to identify Leverage Points for Sustainability: A Case Study in the Cat Ba Biosphere Reserve, Vietnam," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(2), pages 104-115, March.
    13. Knapp, Tom & Mookerjee, Rajen, 1996. "Population growth and global CO2 emissions : A secular perspective," Energy Policy, Elsevier, vol. 24(1), pages 31-37, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana I. Casarrubias-Jaimez & Ana Laura Juárez-López & José Luis Rosas-Acevedo & Maximino Reyes-Umaña & América Libertad Rodríguez-Herrera & Fernando Ramos-Quintana, 2021. "Feasibility Analysis of the Sustainability of the Tres Palos Coastal Lagoon: A Multifactorial Approach," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    2. Fernando Ramos-Quintana & Efraín Tovar-Sánchez & Hugo Saldarriaga-Noreña & Héctor Sotelo-Nava & Juan Paulo Sánchez-Hernández & María-Luisa Castrejón-Godínez, 2019. "A CBR–AHP Hybrid Method to Support the Decision-Making Process in the Selection of Environmental Management Actions," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    3. Giuseppe Salvia & Irene Pluchinotta & Ioanna Tsoulou & Gemma Moore & Nici Zimmermann, 2022. "Understanding Urban Green Space Usage through Systems Thinking: A Case Study in Thamesmead, London," Sustainability, MDPI, vol. 14(5), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Ramos-Quintana & Efraín Tovar-Sánchez & Hugo Saldarriaga-Noreña & Héctor Sotelo-Nava & Juan Paulo Sánchez-Hernández & María-Luisa Castrejón-Godínez, 2019. "A CBR–AHP Hybrid Method to Support the Decision-Making Process in the Selection of Environmental Management Actions," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    2. Ming Meng & Manyu Li, 2020. "Decomposition Analysis and Trend Prediction of CO 2 Emissions in China’s Transportation Industry," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    3. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    4. Anwar, Ahsan & Sharif, Arshian & Fatima, Saba & Ahmad, Paiman & Sinha, Avik & Khan, Syed Abdul Rehman & Jermsittiparsert, Kittisak, 2021. "The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach," MPRA Paper 108160, University Library of Munich, Germany, revised 2021.
    5. Luo, Xiao & Dong, Liang & Dou, Yi & Liang, Hanwei & Ren, Jingzheng & Fang, Kai, 2016. "Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges," Journal of Transport Geography, Elsevier, vol. 56(C), pages 1-14.
    6. Xiaodong Li & Ai Ren & Qi Li, 2022. "Exploring Patterns of Transportation-Related CO 2 Emissions Using Machine Learning Methods," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    7. Luo, Xiao & Dong, Liang & Dou, Yi & Li, Yan & Liu, Kai & Ren, Jingzheng & Liang, Hanwei & Mai, Xianmin, 2017. "Factor decomposition analysis and causal mechanism investigation on urban transport CO2 emissions: Comparative study on Shanghai and Tokyo," Energy Policy, Elsevier, vol. 107(C), pages 658-668.
    8. Suyi Kim, 2019. "Decomposition Analysis of Greenhouse Gas Emissions in Korea’s Transportation Sector," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    9. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    10. Masato Abe, 2011. "Achieving a sustainable automotive sector in Asia and the Pacific: Challenges and opportunities for the reduction of vehicle CO2 emissions," Working Papers 10811, Asia-Pacific Research and Training Network on Trade (ARTNeT), an initiative of UNESCAP and IDRC, Canada..
    11. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    12. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    13. Nam C. Nguyen & Ockie J. H. Bosch, 2014. "The Art of Interconnected Thinking: Starting with the Young," Challenges, MDPI, vol. 5(2), pages 1-21, August.
    14. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    15. M'raihi, Rafaa & Mraihi, Talel & Harizi, Riadh & Taoufik Bouzidi, Mohamed, 2015. "Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia," Transport Policy, Elsevier, vol. 42(C), pages 121-129.
    16. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    17. Cai, Bofeng & Yang, Weishan & Cao, Dong & Liu, Lancui & Zhou, Ying & Zhang, Zhansheng, 2012. "Estimates of China's national and regional transport sector CO2 emissions in 2007," Energy Policy, Elsevier, vol. 41(C), pages 474-483.
    18. Paudel, Krishna P. & Timilsina, Govinda R., 2010. "Would There Be Surplus Grains for Biofuels? An Assessment of Agro-economic Factors and Biofuel Production Potential at the Global Level," Staff Papers 113125, Louisiana State University, Department of Agricultural Economics and Agribusiness.
    19. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Energy, Elsevier, vol. 93(P2), pages 2087-2101.
    20. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:1957-:d:219267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.