IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v42y2015icp121-129.html
   My bibliography  Save this article

Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia

Author

Listed:
  • M'raihi, Rafaa
  • Mraihi, Talel
  • Harizi, Riadh
  • Taoufik Bouzidi, Mohamed

Abstract

Based on data on total CO2 emissions and freight transport, we determine and analyze the effects of main driving factors of total CO2 emissions in Tunisia during the period 1990–2006. We have decomposed the annual emission changes into components representing changes in average emission of fossil fuels, fossil fuel share from road freight transport, fossil fuel intensity from road freight transport, road freight transport intensity and gross domestic production. The decomposing analysis results have shown that economic growth is the principal factor driving the CO2 emission growth. Changes in average emission of fossil fuels is the primarily factor driving the CO2 emission changes. For road freight transport-related components, effects of fossil fuel share, fossil fuel intensity, and road freight transport intensity are all found secondary responsible for CO2 emissions changes. They have a main role especially in driving CO2 emissions increase. This study also shows that, given the drastically decline of economic growth since the popular revolution in 2010, the reduction of CO2 emissions become more difficult by the absolute decoupling of road freight transport from economic growth. The relative decoupling by switching to less emission intensive transportation modes, may the adequate solution. To this end, sustainable freight transport policy in Tunisia could apply some fiscal, economic and technical instruments to reduce fossil fuels consumption and CO2 emissions related to the road mode.

Suggested Citation

  • M'raihi, Rafaa & Mraihi, Talel & Harizi, Riadh & Taoufik Bouzidi, Mohamed, 2015. "Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia," Transport Policy, Elsevier, vol. 42(C), pages 121-129.
  • Handle: RePEc:eee:trapol:v:42:y:2015:i:c:p:121-129
    DOI: 10.1016/j.tranpol.2015.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X15300147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2015.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamakaté, Fatumata & Schipper, Lee, 2009. "Trends in truck freight energy use and carbon emissions in selected OECD countries from 1973 to 2005," Energy Policy, Elsevier, vol. 37(10), pages 3743-3751, October.
    2. Paul, Shyamal & Bhattacharya, Rabindra N., 2004. "Causality between energy consumption and economic growth in India: a note on conflicting results," Energy Economics, Elsevier, vol. 26(6), pages 977-983, November.
    3. Fodha, Mouez & Zaghdoud, Oussama, 2010. "Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve," Energy Policy, Elsevier, vol. 38(2), pages 1150-1156, February.
    4. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2008. "CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques," Energy, Elsevier, vol. 33(3), pages 492-499.
    5. Sorrell, Steve & Lehtonen, Markku & Stapleton, Lee & Pujol, Javier & Toby Champion,, 2012. "Decoupling of road freight energy use from economic growth in the United Kingdom," Energy Policy, Elsevier, vol. 41(C), pages 84-97.
    6. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    7. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    8. Lise, Wietze, 2006. "Decomposition of CO2 emissions over 1980-2003 in Turkey," Energy Policy, Elsevier, vol. 34(14), pages 1841-1852, September.
    9. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    10. Sorrell, Steve & Lehtonen, Markku & Stapleton, Lee & Pujol, Javier & Champion, Toby, 2009. "Decomposing road freight energy use in the United Kingdom," Energy Policy, Elsevier, vol. 37(8), pages 3115-3129, August.
    11. Lin, Jiang & Zhou, Nan & Levine, Mark & Fridley, David, 2008. "Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?," Energy Policy, Elsevier, vol. 36(3), pages 954-970, March.
    12. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Why have CO2 emissions increased in the transport sector in Asia ? underlying factors and policy options," Policy Research Working Paper Series 5098, The World Bank.
    13. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    14. Ang, B.W & Zhang, F.Q, 1999. "Inter-regional comparisons of energy-related CO2 emissions using the decomposition technique," Energy, Elsevier, vol. 24(4), pages 297-305.
    15. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    16. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    17. Laurent Viguier, 1999. "Emissions of SO2, NOx and CO2 in Transition Economies: Emission Inventories and Divisia Index Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 59-87.
    18. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    19. Kiang, Nancy & Schipper, Lee, 1996. "Energy trends in the Japanese transportation sector," Transport Policy, Elsevier, vol. 3(1-2), pages 21-35.
    20. Howarth, Richard B. & Schipper, Lee & Duerr, Peter A. & Strøm, Steinar, 1991. "Manufacturing energy use in eight OECD countries : Decomposing the impacts of changes in output, industry structure and energy intensity," Energy Economics, Elsevier, vol. 13(2), pages 135-142, April.
    21. Scholl, Lynn & Schipper, Lee & Kiang, Nancy, 1996. "CO2 emissions from passenger transport : A comparison of international trends from 1973 to 1992," Energy Policy, Elsevier, vol. 24(1), pages 17-30, January.
    22. Rafaa Mraihi, 2012. "Transport Intensity and Energy Efficiency: Analysis of Policy Implications of Coupling and Decoupling," Chapters, in: Moustafa Eissa (ed.), Energy Efficiency - The Innovative Ways for Smart Energy, the Future Towards Modern Utilities, IntechOpen.
    23. Liimatainen, Heikki & Pöllänen, Markus, 2013. "The impact of sectoral economic development on the energy efficiency and CO2 emissions of road freight transport," Transport Policy, Elsevier, vol. 27(C), pages 150-157.
    24. Park, Se-Hark, 1992. "Decomposition of industrial energy consumption : An alternative method," Energy Economics, Elsevier, vol. 14(4), pages 265-270, October.
    25. Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
    26. Eom, Jiyong & Schipper, Lee & Thompson, Lou, 2012. "We keep on truckin': Trends in freight energy use and carbon emissions in 11 IEA countries," Energy Policy, Elsevier, vol. 45(C), pages 327-341.
    27. Belloumi, Mounir, 2009. "Energy consumption and GDP in Tunisia: Cointegration and causality analysis," Energy Policy, Elsevier, vol. 37(7), pages 2745-2753, July.
    28. World Bank, 2010. "World Development Indicators 2010," World Bank Publications - Books, The World Bank Group, number 4373, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riadh Harizi, 2023. "Maritime infrastructure and growth: econometric measurement using panel data from Tunisia," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-17, December.
    2. Andrés, Lidia & Padilla, Emilio, 2018. "Driving factors of GHG emissions in the EU transport activity," Transport Policy, Elsevier, vol. 61(C), pages 60-74.
    3. Kena Mi & Rulong Zhuang, 2022. "Producer Services Agglomeration and Carbon Emission Reduction—An Empirical Test Based on Panel Data from China," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    4. Yong Wang & Yu Zhou & Lin Zhu & Fei Zhang & Yingchun Zhang, 2018. "Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions," Energies, MDPI, vol. 11(5), pages 1-29, May.
    5. Changzheng Zhu & Wenbo Du, 2019. "A Research on Driving Factors of Carbon Emissions of Road Transportation Industry in Six Asia-Pacific Countries Based on the LMDI Decomposition Method," Energies, MDPI, vol. 12(21), pages 1-19, October.
    6. Hualong Yang & Xuefei Ma, 2019. "Uncovering CO 2 Emissions Patterns from China-Oriented International Maritime Transport: Decomposition and Decoupling Analysis," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    7. Abiye Tob-Ogu & Niraj Kumar & John Cullen & Erica E. F. Ballantyne, 2018. "Sustainability Intervention Mechanisms for Managing Road Freight Transport Externalities: A Systematic Literature Review," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    8. Huali Sun & Mengzhen Li & Yaofeng Xue, 2019. "Examining the Factors Influencing Transport Sector CO 2 Emissions and Their Efficiency in Central China," Sustainability, MDPI, vol. 11(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafaa Mraïhi & Riadh Harizi, 2014. "Road Freight Transport and Carbon Dioxide Emissions: Policy Options for Tunisia," Energy & Environment, , vol. 25(1), pages 79-92, February.
    2. Changzheng Zhu & Wenbo Du, 2019. "A Research on Driving Factors of Carbon Emissions of Road Transportation Industry in Six Asia-Pacific Countries Based on the LMDI Decomposition Method," Energies, MDPI, vol. 12(21), pages 1-19, October.
    3. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    4. Mraihi, Rafaa & ben Abdallah, Khaled & Abid, Mehdi, 2013. "Road transport-related energy consumption: Analysis of driving factors in Tunisia," Energy Policy, Elsevier, vol. 62(C), pages 247-253.
    5. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    6. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    7. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    8. Ren, Shenggang & Fu, Xiang & Chen, XiaoHong, 2012. "Regional variation of energy-related industrial CO2 emissions mitigation in China," China Economic Review, Elsevier, vol. 23(4), pages 1134-1145.
    9. GUPTA Monika & SINGH Sanjay, 2016. "Factorizing The Changes In Co2 Emissions From Indian Road Passenger Transport: A Decomposition Analysis," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 11(3), pages 67-83, December.
    10. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    11. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    12. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    13. Song, Yan & Zhang, Ming & Shan, Cheng, 2019. "Research on the decoupling trend and mitigation potential of CO2 emissions from China's transport sector," Energy, Elsevier, vol. 183(C), pages 837-843.
    14. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    15. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2013. "Indicators for sustainable energy development: A multivariate cointegration and causality analysis from Tunisian road transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 34-43.
    16. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
    17. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    18. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    19. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    20. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:42:y:2015:i:c:p:121-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.