IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0287842.html
   My bibliography  Save this article

Measurement and driving factors of carbon productivity in China’s provinces: From the perspective of embodied carbon emissions

Author

Listed:
  • Changyi Liang
  • Peng Gao

Abstract

Carbon productivity incorporates economic development and carbon emissions within a unified framework for measuring the economic value per unit carbon emissions. In the context of climate change, improving carbon productivity is of great value for promoting low-carbon development in a country or region. From the perspective of embodied carbon emissions, this study constructs an embodied carbon productivity (ECP) index and uses the Logarithmic Mean Divisia Index decomposition method to study the evolution trends and driving factors of ECP in China’s provinces based on China Interregional Input-Output Tables for 2002, 2007, 2012, and 2017. The following results were obtained: First, China’s overall ECP showed a continuously increasing trend during the entire period, with the energy efficiency factor playing the largest role among all driving factors. Second, the ECP in 19 of the 30 Chinese provinces continued to increase and the contributions of energy emission ratio, ECP per capita, and population size factors to the increase in ECP presented evident disparities among different provinces. Third, the ECP in three major regions ranged from high to low in the order of East, Central, and West, with the largest growth in the Central, followed by the West, with the smallest in the East. Based on the analysis of research results, we proposed relevant policy recommendations to further improve China’s ECP and achieve low-carbon economy.

Suggested Citation

  • Changyi Liang & Peng Gao, 2023. "Measurement and driving factors of carbon productivity in China’s provinces: From the perspective of embodied carbon emissions," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-19, August.
  • Handle: RePEc:plo:pone00:0287842
    DOI: 10.1371/journal.pone.0287842
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287842
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0287842&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0287842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang, Qiang & Huo, Jiale & Saqib, Najia & Mahmood, Haider, 2022. "Modelling the effect of renewable energy and public-private partnership in testing EKC hypothesis: Evidence from methods moment of quantile regression," Renewable Energy, Elsevier, vol. 192(C), pages 485-494.
    2. Meng, Ming & Niu, Dongxiao, 2012. "Three-dimensional decomposition models for carbon productivity," Energy, Elsevier, vol. 46(1), pages 179-187.
    3. Bai, Caiquan & Du, Kerui & Yu, Ying & Feng, Chen, 2019. "Understanding the trend of total factor carbon productivity in the world: Insights from convergence analysis," Energy Economics, Elsevier, vol. 81(C), pages 698-708.
    4. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    5. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Tao & Huang, Xuhui & Zhang, Ning, 2023. "The effect of innovation pilot on carbon total factor productivity: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 125(C).
    2. Kuosmanen, Natalia & Maczulskij, Terhi, 2022. "The Role of Firm Dynamics in the Green Transition: Carbon Productivity Decomposition in Finnish Manufacturing," ETLA Working Papers 99, The Research Institute of the Finnish Economy.
    3. Bagchi, Prantik & Sahu, Santosh Kumar & Kumar, Ajay & Tan, Kim Hua, 2022. "Analysis of carbon productivity for firms in the manufacturing sector of India," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    4. Xu, Mengmeng & Lin, Boqiang, 2022. "Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry," Resources Policy, Elsevier, vol. 77(C).
    5. Xiaodan Gao & Yinhui Wang, 2023. "From Investment to the Environment: Exploring the Relationship between the Coordinated Development of Two-Way FDI and Carbon Productivity under Fiscal Decentralization," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    6. Feng, Xinhui & Lin, Xinle & Li, Yan & Yang, Jiayu & Yu, Er & Lei, Kaige, 2024. "Spatial association network of carbon emission performance: Formation mechanism and structural characteristics," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    7. Haider Mahmood & Maham Furqan & Najia Saqib & Anass Hamadelneel Adow & Muzaffar Abbas, 2023. "Innovations and the CO 2 Emissions Nexus in the MENA Region: A Spatial Analysis," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    8. Huan Zhang & Kangning Xu, 2016. "Impact of Environmental Regulation and Technical Progress on Industrial Carbon Productivity: An Approach Based on Proxy Measure," Sustainability, MDPI, vol. 8(8), pages 1-15, August.
    9. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    10. Faik Bilgili & Daniel Balsalobre-Lorente & Sevda Kuşkaya & Mohammed Alnour & Seyit Önderol & Mohammad Enamul Hoque, 2024. "Are research and development on energy efficiency and energy sources effective in the level of CO2 emissions? Fresh evidence from EU data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24183-24219, September.
    11. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    12. Wenlu Zhao & Guanghu Jin & Chenyue Huang & Jinji Zhang, 2023. "Attention and Sentiment of the Chinese Public toward a 3D Greening System Based on Sina Weibo," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    13. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.
    14. Shenhua Liu & Deheng Xiao, 2024. "Can Big Data Comprehensive Pilot Zone Promote Low-Carbon Urban Development? Evidence from China," Sustainability, MDPI, vol. 17(1), pages 1-15, December.
    15. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    16. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    17. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    18. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    19. Zhang, Pingdan & Yuan, Haoming & Bai, Fuli & Tian, Xin & Shi, Feng, 2018. "How do carbon dioxide emissions respond to industrial structural transitions? Empirical results from the northeastern provinces of China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 145-154.
    20. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0287842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.