IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v139y2021ics1364032120309758.html
   My bibliography  Save this article

Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization

Author

Listed:
  • Antar, Mohammed
  • Lyu, Dongmei
  • Nazari, Mahtab
  • Shah, Ateeq
  • Zhou, Xiaomin
  • Smith, Donald L.

Abstract

Given both the ongoing expansion of world population and development of climate change conditions, it is increasingly imperative to develop and deploy sustainable biomass production methods to allow establishment of a flourishing and sustainable bioeconomy. Green technologies, including biofuels and bioproducts, are among the most effective strategies for decreasing greenhouse gas emissions and global warming, while meeting humanity's energy requirements. Biomass now provides a measure of energy to many countries, however supporting technologies are not widely accepted, largely because of low returns for biomass producers. This paper provides an overview of world biomass production and utilization. It also indicates potential approaches for enhancing biomass production: agronomic practices, associated microorganisms, genome editing, selection of optimal technologies, best combination approaches for feeding global human and animal populations, while, decreasing greenhouse gas emissions and replacing demand for fossil energy with bioenergy. A more novel concept is proposed, microbe-to-plant signal compounds, as the potential approach to address the challenges we are facing. These compounds (e.g., lipo-chitooligosaccharide and thuricin 17) have been shown to increase growth for diverse plant species, particularly when they are growing under stressful conditions, however, their commercial development/utilization is far from complete. This review paper will expand the understanding of using the signal interaction between crop and beneficial microorganisms not only to enhance plant growth but also promote agricultural sustainability and a stronger bioeconomy.

Suggested Citation

  • Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120309758
    DOI: 10.1016/j.rser.2020.110691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120309758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elena Rozzi & Francesco Demetrio Minuto & Andrea Lanzini & Pierluigi Leone, 2020. "Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses," Energies, MDPI, vol. 13(2), pages 1-96, January.
    2. Chaitanya, Bathina & Bahadur, Vaibhav & Thakur, Ajay D. & Raj, Rishi, 2018. "Biomass-gasification-based atmospheric water harvesting in India," Energy, Elsevier, vol. 165(PB), pages 610-621.
    3. Masum, Md Farhad Hossain & Dwivedi, Puneet & Anderson, William F., 2020. "Estimating unit production cost, carbon intensity, and carbon abatement cost of electricity generation from bioenergy feedstocks in Georgia, United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    5. Gallagher, Paul W., 2006. "Energy Production with Biomass: What Are the Prospects," Staff General Research Papers Archive 12559, Iowa State University, Department of Economics.
    6. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    7. Gallagher, Paul W., 2006. "Energy Production with Biomass: What Are the Prospects?," ISU General Staff Papers 200601010800001446, Iowa State University, Department of Economics.
    8. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2019. "Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 626-642.
    9. Li, Xue & Mupondwa, Edmund & Panigrahi, Satya & Tabil, Lope & Sokhansanj, Shahab & Stumborg, Mark, 2012. "A review of agricultural crop residue supply in Canada for cellulosic ethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2954-2965.
    10. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    11. Xue, Shuai & Lewandowski, Iris & Wang, Xiaoyu & Yi, Zili, 2016. "Assessment of the production potentials of Miscanthus on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 932-943.
    12. Chen, Wei & Wu, Fangwei & Zhang, Jinhua, 2016. "Potential production of non-food biofuels in China," Renewable Energy, Elsevier, vol. 85(C), pages 939-944.
    13. Paethanom, A. & Bartocci, P. & D’ Alessandro, B. & D’ Amico, M. & Testarmata, F. & Moriconi, N. & Slopiecka, K. & Yoshikawa, K. & Fantozzi, F., 2013. "A low-cost pyrogas cleaning system for power generation: Scaling up from lab to pilot," Applied Energy, Elsevier, vol. 111(C), pages 1080-1088.
    14. Zhang, Zibin & Lohr, Luanne & Escalante, Cesar & Wetzstein, Michael, 2010. "Food versus fuel: What do prices tell us?," Energy Policy, Elsevier, vol. 38(1), pages 445-451, January.
    15. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    16. Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
    17. Caesar B. Cororaton & Govinda R. Timilsina, 2014. "Biofuels and Poverty," Natural Resource Management and Policy, in: Govinda R. Timilsina & David Zilberman (ed.), The Impacts of Biofuels on the Economy, Environment, and Poverty, edition 127, chapter 0, pages 79-89, Springer.
    18. Won, Wangyun & Maravelias, Christos T., 2017. "Thermal fractionation and catalytic upgrading of lignocellulosic biomass to biofuels: Process synthesis and analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 357-366.
    19. Ajanovic, Amela, 2011. "Biofuels versus food production: Does biofuels production increase food prices?," Energy, Elsevier, vol. 36(4), pages 2070-2076.
    20. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    21. van den Broek, R & Teeuwisse, S & Healion, K & Kent, T & van Wijk, A & Faaij, A & Turkenburg, W, 2001. "Potentials for electricity production from wood in Ireland," Energy, Elsevier, vol. 26(11), pages 991-1013.
    22. FitzHerbert, David, 1999. "Electricity generating renewables and global warming emissions," Renewable Energy, Elsevier, vol. 16(1), pages 1057-1063.
    23. Wilhelm Klümper & Matin Qaim, 2014. "A Meta-Analysis of the Impacts of Genetically Modified Crops," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-7, November.
    24. Sudhakar, M.P. & Arunkumar, K. & Perumal, K., 2020. "Pretreatment and process optimization of spent seaweed biomass (SSB) for bioethanol production using yeast (Saccharomyces cerevisiae)," Renewable Energy, Elsevier, vol. 153(C), pages 456-471.
    25. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    26. Ravindranath, N.H. & Sita Lakshmi, C. & Manuvie, Ritumbra & Balachandra, P., 2011. "Biofuel production and implications for land use, food production and environment in India," Energy Policy, Elsevier, vol. 39(10), pages 5737-5745, October.
    27. Joachim Von Braun, 2008. "Rising Food Prices: What Should Be Done? Steigende Nahrungsmittelpreise: Was sollte getan werden? La hausse des prix alimentaires : Que doit‐on faire?," EuroChoices, The Agricultural Economics Society, vol. 7(2), pages 30-35, August.
    28. Nonhebel, Sanderine, 2012. "Global food supply and the impacts of increased use of biofuels," Energy, Elsevier, vol. 37(1), pages 115-121.
    29. Brinkman, Marnix L.J. & da Cunha, Marcelo P. & Heijnen, Sanne & Wicke, Birka & Guilhoto, Joaquim J.M. & Walter, Arnaldo & Faaij, André P.C. & van der Hilst, Floor, 2018. "Interregional assessment of socio-economic effects of sugarcane ethanol production in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 347-362.
    30. Gallagher, Paul W., 2006. "Energy Production with Biomass: What Are the Prospects?," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 21(1), pages 1-6.
    31. Ferreira, L.R.A. & Otto, R.B. & Silva, F.P. & De Souza, S.N.M. & De Souza, S.S. & Ando Junior, O.H., 2018. "Review of the energy potential of the residual biomass for the distributed generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 440-455.
    32. Edrisi, Sheikh Adil & Abhilash, P.C., 2016. "Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1537-1551.
    33. Hoekman, S. Kent & Broch, Amber & Liu, Xiaowei (Vivian), 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part I – Impacts on water, soil, and air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3140-3158.
    34. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    35. Urbanchuk, John M., 2007. "Economic Impacts on the Farm Community of Cooperative Ownership of Ethanol Production (Paper and PowerPoint)," Agricultural Outlook Forum 2007 8083, United States Department of Agriculture, Agricultural Outlook Forum.
    36. Abbasi, Tasneem & Abbasi, S.A., 2010. "Biomass energy and the environmental impacts associated with its production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 919-937, April.
    37. Mupondwa, Edmund & Li, Xue & Tabil, Lope & Sokhansanj, Shahab & Adapa, Phani, 2017. "Status of Canada's lignocellulosic ethanol: Part II: Hydrolysis and fermentation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1535-1555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adenike Akinsemolu & Helen Onyeaka & Omololu Fagunwa & Adewale Henry Adenuga, 2023. "Toward a Resilient Future: The Promise of Microbial Bioeconomy," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    2. Cai, Mengfan & An, Chunjiang & Guy, Christophe, 2021. "A scientometric analysis and review of biogenic volatile organic compound emissions: Research hotspots, new frontiers, and environmental implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Rhoda Afriyie Mensah & Vigneshwaran Shanmugam & Sreenivasan Narayanan & Nima Razavi & Adrian Ulfberg & Thomas Blanksvärd & Faez Sayahi & Peter Simonsson & Benjamin Reinke & Michael Försth & Gabriel Sa, 2021. "Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    4. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    5. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Dookheh, Maryam & Najafi Chermahini, Alireza, 2023. "Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch," Renewable Energy, Elsevier, vol. 211(C), pages 227-235.
    7. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Essossinam Beguedou & Satyanarayana Narra & Ekua Afrakoma Armoo & Komi Agboka & Mani Kongnine Damgou, 2023. "E-Technology Enabled Sourcing of Alternative Fuels to Create a Fair-Trade Circular Economy for Sustainable Energy in Togo," Energies, MDPI, vol. 16(9), pages 1-18, April.
    9. Bai, Yijie & He, Yurong, 2022. "Enhanced solar modulation ability of smart windows based on hydroxypropyl cellulose mixed with nonionic surfactants," Renewable Energy, Elsevier, vol. 198(C), pages 749-759.
    10. Delon Konan & Ekoun Koffi & Adama Ndao & Eric Charles Peterson & Denis Rodrigue & Kokou Adjallé, 2022. "An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass," Energies, MDPI, vol. 15(9), pages 1-25, April.
    11. Jia, Yongsheng & Wang, Yingjie & Zhang, Qi & Rong, Hongwei & Liu, Yuhuan & Xiao, Bo & Guo, Dabin & Laghari, Mahmood & Ruan, Roger, 2022. "Gas-carrying enhances the combustion temperature of the biomass particles," Energy, Elsevier, vol. 239(PA).
    12. Mukherjee, Agneev & Bruijnincx, Pieter & Junginger, Martin, 2023. "Techno-economic competitiveness of renewable fuel alternatives in the marine sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    13. Igliński, Bartłomiej & Pietrzak, Michał Bernard & Kiełkowska, Urszula & Skrzatek, Mateusz & Kumar, Gopalakrishnan & Piechota, Grzegorz, 2022. "The assessment of renewable energy in Poland on the background of the world renewable energy sector," Energy, Elsevier, vol. 261(PB).
    14. Zheng, Ji-Lu & Zhu, Ya-Hong & Dong, Yan-Yan & Zhu, Ming-Qiang, 2023. "Life cycle water consumption of bio-oil fermentation for bio-ethanol production based on a distributed-centralized model," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    2. Henderson, Jason R. & Gloy, Brent A., 2008. "The Impact of Ethanol Plants on Land Values in the Great Plains," 2007 Agricultural and Rural Finance Markets in Transition, October 4-5, 2007, St. Louis, Missouri 48148, Regional Research Committee NC-1014: Agricultural and Rural Finance Markets in Transition.
    3. Pat Westhoff & Wyatt Thompson & John Kruse & Seth Meyer, 2007. "Ethanol Transforms Agricultural Markets in the USA L'éthanol transforme les marchés agricoles aux Etats‐Unis Ethanol transformiert die Agrarmärkte in den USA," EuroChoices, The Agricultural Economics Society, vol. 6(1), pages 14-21, April.
    4. Ge, Jianping & Lei, Yalin & Tokunaga, Suminori, 2014. "Non-grain fuel ethanol expansion and its effects on food security: A computable general equilibrium analysis for China," Energy, Elsevier, vol. 65(C), pages 346-356.
    5. Chao Bi & Jingjing Zeng & Wanli Zhang & Yonglin Wen, 2020. "Modelling the Coevolution of the Fuel Ethanol Industry, Technology System, and Market System in China: A History-Friendly Model," Energies, MDPI, vol. 13(5), pages 1-26, February.
    6. Thompson, Wyatt & Meyer, Seth & Westhoff, Pat, 2009. "How does petroleum price and corn yield volatility affect ethanol markets with and without an ethanol use mandate?," Energy Policy, Elsevier, vol. 37(2), pages 745-749, February.
    7. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    8. Quiggin, John, 2005. "Counting the cost of climate change at an agricultural level," Risk and Sustainable Management Group Working Papers 152085, University of Queensland, School of Economics.
    9. Quiggin, John C., 2009. "Agriculture and global climate stabilization," 2009 Conference, August 16-22, 2009, Beijing, China 53204, International Association of Agricultural Economists.
    10. Brent A. Gloy & Jason Henderson, 2008. "The impact of ethanol plants on cropland values in the Great Plains," Regional Research Working Paper RRWP 08-01, Federal Reserve Bank of Kansas City.
    11. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 621-632.
    12. Marek Wieruszewski & Aleksandra Górna & Zygmunt Stanula & Krzysztof Adamowicz, 2022. "Energy Use of Woody Biomass in Poland: Its Resources and Harvesting Form," Energies, MDPI, vol. 15(18), pages 1-21, September.
    13. Henderson, Jason R. & Gloy, Brent A., 2008. "The Impact of Ethanol Plants on Cropland Values in the Great Plains," Working Papers 51080, Cornell University, Department of Applied Economics and Management.
    14. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    15. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    16. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    17. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    18. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    19. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    20. Dookheh, Maryam & Najafi Chermahini, Alireza, 2023. "Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch," Renewable Energy, Elsevier, vol. 211(C), pages 227-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120309758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.