IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p4918-d265488.html
   My bibliography  Save this article

Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel

Author

Listed:
  • Fabián Vargas

    (Facultad de Ingeniería, Departamento de Mecánica, Institución Universitaria Pascual Bravo, Apartado Aéreo, 6564 calle 73 No.73A- 226, Medellín, Colombia)

  • Armando Pérez

    (Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd, Universitario #1000, Unidad Valle de las Palmas, Baja California CP. 21500, Tijuana, Mexico)

  • Rene Delgado

    (Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd, Universitario #1000, Unidad Valle de las Palmas, Baja California CP. 21500, Tijuana, Mexico)

  • Emilio Hernández

    (Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd, Universitario #1000, Unidad Valle de las Palmas, Baja California CP. 21500, Tijuana, Mexico)

  • José Alejandro Suástegui

    (Facultad de Ingeniería, Universidad Autónoma de Baja California, Calle de la Normal s/n, Col. Insurgentes Este C.P. 21280, Mexicali, Mexico)

Abstract

The present investigation analyzes the performance of a Hatz diesel engine that has 912 cubic centimeters (cc), stationary type, two cylinders, an air cooled feature and B10 (90% diesel and 10% palm biodiesel), using a test bench to improve statistically the repeatability and reproducibility of the runs. The experimental reference tests were carried out under defined conditions at a fixed speed of 1800 revolutions per minute (rpm) and four load levels: 35%, 50%, 65% and 80%. The repeatability analysis was based on the technical standard NTC-ISO / IEC17025. The variables of torque, fuel consumption (FC), air consumption (AC) and exhaust gas temperatures (EGT) showed an increase related with the load increase, showing a lower variation of AC and emissions. With the mechanism’s implementation of attenuator of air blows, adjustment mechanism for rpm and preheating air chamber for intake manifold, it was observed that the rpm presented the lowest statistical variability. The variables that presented the highest Pearson correlation with respect to the FC are the CO 2 , NO X and O 2 , this is because the engine does not have the Common Rail system, which causes the fuel supply to not be injected accurately and uniformly, therefore the evaluation of performance of the engine could not be repeatable.

Suggested Citation

  • Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4918-:d:265488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/4918/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/4918/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ndayishimiye, Pascal & Tazerout, Mohand, 2011. "Use of palm oil-based biofuel in the internal combustion engines: Performance and emissions characteristics," Energy, Elsevier, vol. 36(3), pages 1790-1796.
    2. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    3. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part I: Review," Energy, Elsevier, vol. 72(C), pages 1-16.
    4. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    5. Abdolsaeid Ganjehkaviri & Mohammad Nazri Mohd Jaafar & Seyed Ehsan Hosseini & Anas Basri Musthafa, 2016. "Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner," Energies, MDPI, vol. 9(2), pages 1-10, February.
    6. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    7. da Silva, Marcelo José & Melegari de Souza, Samuel Nelson & Inácio Chaves, Luiz & Aparecido Rosa, Helton & Secco, Deonir & Ferreira Santos, Reginaldo & Aparecido Baricatti, Reinaldo & Camargo Nogueira, 2013. "Comparative analysis of engine generator performance using diesel oil and biodiesels available in Paraná State, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 278-282.
    8. Somorin, Tosin Onabanjo & Kolios, Athanasios J., 2017. "Prospects of deployment of Jatropha biodiesel-fired plants in Nigeria’s power sector," Energy, Elsevier, vol. 135(C), pages 726-739.
    9. Pattamaprom, C. & Pakdee, W. & Ngamjaroen, S., 2012. "Storage degradation of palm-derived biodiesels: Its effects on chemical properties and engine performance," Renewable Energy, Elsevier, vol. 37(1), pages 412-418.
    10. Agarwal, Avinash Kumar & Dhar, Atul & Gupta, Jai Gopal & Kim, Woong Il & Lee, Chang Sik & Park, Sungwook, 2014. "Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine," Applied Energy, Elsevier, vol. 130(C), pages 212-221.
    11. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    12. Nwafor, O.M.I, 2003. "The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions," Renewable Energy, Elsevier, vol. 28(2), pages 171-181.
    13. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part II: Experimental study," Energy, Elsevier, vol. 72(C), pages 17-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vu H. Nguyen & Minh Q. Duong & Kien T. Nguyen & Thin V. Pham & Phuong X. Pham, 2020. "An Extensive Analysis of Biodiesel Blend Combustion Characteristics under a Wide-Range of Thermal Conditions of a Cooperative Fuel Research Engine," Sustainability, MDPI, vol. 12(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2016. "Analysis of combustion phenomena and pollutant formation in a small compression ignition engine fuelled with blended and pure rapeseed methyl ester," Energy, Elsevier, vol. 106(C), pages 618-630.
    3. Lee, Sanghoon & Lee, Chang Sik & Park, Sungwook & Gupta, Jai Gopal & Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2017. "Spray characteristics, engine performance and emissions analysis for Karanja biodiesel and its blends," Energy, Elsevier, vol. 119(C), pages 138-151.
    4. He, Bang-Quan, 2016. "Advances in emission characteristics of diesel engines using different biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 570-586.
    5. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    6. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    7. S. M. Ashrafur Rahman & Md. Nurun Nabi & Thuy Chu Van & Kabir Suara & Mohammad Jafari & Ashley Dowell & Md. Aminul Islam & Anthony J. Marchese & Jessica Tryner & Md. Farhad Hossain & Thomas J. Rainey , 2018. "Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends," Energies, MDPI, vol. 11(4), pages 1-15, March.
    8. Sun, Chunhua & Liu, Yu & Qiao, Xinqi & Ju, Dehao & Tang, Qing & Fang, Xiaoyuan & Zhou, Feng, 2020. "Experimental study of effects of exhaust gas recirculation on combustion, performance, and emissions of DME-biodiesel fueled engine," Energy, Elsevier, vol. 197(C).
    9. Bora, Bhaskor J. & Saha, Ujjwal K., 2016. "Experimental evaluation of a rice bran biodiesel – biogas run dual fuel diesel engine at varying compression ratios," Renewable Energy, Elsevier, vol. 87(P1), pages 782-790.
    10. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    11. Magdalena Matusiak & Radosław Ślęzak & Stanisław Ledakowicz, 2020. "Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis," Energies, MDPI, vol. 13(15), pages 1-15, August.
    12. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    13. Ma, Yingqun & Wang, Qunhui & Gao, Zhen & Sun, Xiaohong & Wang, Nan & Niu, Ruxuan & Ma, Hongzhi, 2016. "Transesterification of waste cooking oil using FeCl3-modified resin catalyst and the research of catalytic mechanism," Renewable Energy, Elsevier, vol. 86(C), pages 643-650.
    14. Lin, Kuang C. & Dahiya, Anurag & Tao, Hairong & Kao, Fan-Hsu, 2022. "Combustion mechanism and CFD investigation of methyl isobutanoate as a component of biodiesel surrogate," Energy, Elsevier, vol. 249(C).
    15. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    16. López, I. & Pinzi, S. & Leiva-Candia, D. & Dorado, M.P., 2016. "Multiple response optimization to reduce exhaust emissions and fuel consumption of a diesel engine fueled with olive pomace oil methyl ester/diesel fuel blends," Energy, Elsevier, vol. 117(P2), pages 398-404.
    17. Bora, Bhaskor J. & Saha, Ujjwal K., 2015. "Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels," Renewable Energy, Elsevier, vol. 81(C), pages 490-498.
    18. Jakub Čedík & Martin Pexa & Michal Holúbek & Zdeněk Aleš & Radek Pražan & Peter Kuchar, 2020. "Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine," Energies, MDPI, vol. 13(15), pages 1-16, July.
    19. Eko Supriyanto & Jayan Sentanuhady & Ariyana Dwiputra & Ari Permana & Muhammad Akhsin Muflikhun, 2021. "The Recent Progress of Natural Sources and Manufacturing Process of Biodiesel: A Review," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    20. Kim, Junghwan & Kim, Keunsoo & Oh, Seungmook & Lee, Sunyoup, 2016. "An assessment of the biodiesel low-temperature combustion engine under transient cycles using single-cylinder engine experiment and cycle simulation," Energy, Elsevier, vol. 95(C), pages 471-482.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4918-:d:265488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.