IDEAS home Printed from
   My bibliography  Save this article

Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario


  • Edrisi, Sheikh Adil
  • Abhilash, P.C.


Globally, the share of renewable energy is limited to 19% of the total energy consumption. Out of which, 9.3% is shared by traditional biomass. In India, the installed capacity of energy production from biomass is estimated as 12.8% of the total renewables. Although this scenario is at par with the global level, even this share of bioenergy production is not sufficient to meet the present and future energy demands of India. Therefore, there is an immediate need to maximize the bioenergy production in India. Apart from the reduced emission rate than the fossil fuels, bioenergy has also immense potential to mitigate various environmental issues and therefore the biofuel cultivation has been considered as an additional opportunity for land restoration. However, the land availability for bioenergy production is very limited since there is a growing demand to produce more food to feed the rapidly growing population. Therefore, the arable lands cannot be considered for bioenrgy production. Hence we propose that the sustainable intensification of bioenergy production from degraded land is a viable option because the wise and judicious utilization of marginal and degraded lands can play a vital role in solving the conflict between food and fuel production and offer a sustainable solution to meet out the energy requirement of the society. In this backdrop, the present article is aimed to explore the prospects and promises of bioenergy production from the marginal and degraded lands of India. Since India has around 39.24 million hectares of wastelands, sustainable utilization of such land would provide multipurpose benefits such as biomass and bioenergy production, soil carbon sequestration and regaining ecosystem services.

Suggested Citation

  • Edrisi, Sheikh Adil & Abhilash, P.C., 2016. "Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1537-1551.
  • Handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:1537-1551
    DOI: 10.1016/j.rser.2015.10.050

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Van Hoesen, John & Letendre, Steven, 2010. "Evaluating potential renewable energy resources in Poultney, Vermont: A GIS-based approach to supporting rural community energy planning," Renewable Energy, Elsevier, vol. 35(9), pages 2114-2122.
    2. Chen, Bin & Chen, Shaoqing, 2013. "Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system," Energy Policy, Elsevier, vol. 62(C), pages 707-716.
    3. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    4. Terrapon-Pfaff, Julia & Dienst, Carmen & König, Julian & Ortiz, Willington, 2014. "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1-10.
    5. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    6. Bhattacharyya, Subhes C., 2013. "Financing energy access and off-grid electrification: A review of status, options and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 462-472.
    7. Lohan, Shiv Kumar & Ram, T. & Mukesh, S. & Ali, M. & Arya, S., 2013. "Sustainability of biodiesel production as vehicular fuel in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 251-259.
    8. Chen, Shaoqing & Chen, Bin, 2012. "Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3948-3959.
    9. Bhattacharya, Soma & Cropper, Maureen L., 2010. "Options for Energy Efficiency in India and Barriers to Their Adoption: A Scoping Study," Discussion Papers dp-10-20, Resources For the Future.
    10. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    11. McCormick, Nadine & Howard, Geoffrey, 2013. "Beating back biofuel crop invasions: Guidelines on managing the invasive risk of biofuel developments," Renewable Energy, Elsevier, vol. 49(C), pages 263-266.
    12. Khalil, H.P.S. Abdul & Aprilia, N.A. Sri & Bhat, A.H. & Jawaid, M. & Paridah, M.T. & Rudi, D., 2013. "A Jatropha biomass as renewable materials for biocomposites and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 667-685.
    13. Singh, Jasvinder & Gu, Sai, 2010. "Biomass conversion to energy in India--A critique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1367-1378, June.
    14. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2007. "Biomass gasifier projects for decentralized power supply in India: A financial evaluation," Energy Policy, Elsevier, vol. 35(2), pages 1373-1385, February.
    15. Edrisi, Sheikh Adil & Dubey, Rama Kant & Tripathi, Vishal & Bakshi, Mansi & Srivastava, Pankaj & Jamil, Sarah & Singh, H.B. & Singh, Nandita & Abhilash, P.C., 2015. "Jatropha curcas L.: A crucified plant waiting for resurgence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 855-862.
    16. Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 645-663, September.
      • Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Post-Print halshs-01117673, HAL.
      • Chakravorty, Ujjayant & Hubert, Marie-Helene & Nostbakken, Linda, 2009. "Fuel versus Food," Working Papers 2009-20, University of Alberta, Department of Economics.
    17. Bhattacharya, S.C. & Jana, Chinmoy, 2009. "Renewable energy in India: Historical developments and prospects," Energy, Elsevier, vol. 34(8), pages 981-991.
    18. G. M. Peterson & J. K. Galbraith, 1932. "The Concept of Marginal Land," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 14(2), pages 295-310.
    19. Zhuang, Dafang & Jiang, Dong & Liu, Lei & Huang, Yaohuan, 2011. "Assessment of bioenergy potential on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1050-1056, February.
    20. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    21. Milbrandt, Anelia R. & Heimiller, Donna M. & Perry, Andrew D. & Field, Christopher B., 2014. "Renewable energy potential on marginal lands in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 473-481.
    22. Shortall, O.K., 2013. "“Marginal land” for energy crops: Exploring definitions and embedded assumptions," Energy Policy, Elsevier, vol. 62(C), pages 19-27.
    23. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    24. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    25. Ravindranath, N.H. & Sita Lakshmi, C. & Manuvie, Ritumbra & Balachandra, P., 2011. "Biofuel production and implications for land use, food production and environment in India," Energy Policy, Elsevier, vol. 39(10), pages 5737-5745, October.
    26. Wustenhagen, Rolf & Bilharz, Michael, 2006. "Green energy market development in Germany: effective public policy and emerging customer demand," Energy Policy, Elsevier, vol. 34(13), pages 1681-1696, September.
    27. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K. & Kundu, K., 2009. "Effect of blends of Palm-Jatropha-Pongamia biodiesels on cloud point and pour point," Energy, Elsevier, vol. 34(11), pages 2016-2021.
    28. Valdez-Vazquez, Idania & Acevedo-Benítez, Jorge A. & Hernández-Santiago, Cuitlahuac, 2010. "Distribution and potential of bioenergy resources from agricultural activities in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2147-2153, September.
    29. Kumar, Ashwani & Sharma, Satyawati, 2011. "Potential non-edible oil resources as biodiesel feedstock: An Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1791-1800, May.
    30. Ravindranath, N.H. & Balachandra, P., 2009. "Sustainable bioenergy for India: Technical, economic and policy analysis," Energy, Elsevier, vol. 34(8), pages 1003-1013.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:rensus:v:81:y:2018:i:p2:p:2744-2758 is not listed on IDEAS
    2. Natarajan, Karthikeyan & Latva-Käyrä, Petri & Zyadin, Anas & Pelkonen, Paavo, 2016. "New methodological approach for biomass resource assessment in India using GIS application and land use/land cover (LULC) maps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 256-268.
    3. repec:gam:jlands:v:8:y:2019:i:4:p:63-:d:222800 is not listed on IDEAS
    4. repec:eee:appene:v:205:y:2017:i:c:p:477-485 is not listed on IDEAS
    5. repec:gam:jeners:v:12:y:2019:i:3:p:396-:d:201161 is not listed on IDEAS
    6. repec:eee:rensus:v:81:y:2018:i:p1:p:1247-1258 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:1537-1551. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.