IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v94y2018icp440-455.html
   My bibliography  Save this article

Review of the energy potential of the residual biomass for the distributed generation in Brazil

Author

Listed:
  • Ferreira, L.R.A.
  • Otto, R.B.
  • Silva, F.P.
  • De Souza, S.N.M.
  • De Souza, S.S.
  • Ando Junior, O.H.

Abstract

This paper presents a detailed review of the energy potential from residual biomass for distributed generation in Brazil, presenting the potential by macro-region of the different types of residues generated in the agricultural, forestry, livestock, industrial and urban sectors. The focus of this research is to map and point out, through bibliographic research, the great potential of biomass in the Brazilian market for the production of biogas and consequently the use for electric power generation in the country and especially in the state of Paraná. Therefore, it should be emphasized that the methodology used is based on a bibliographic research from databases and recent research using a survey carried out by the ITAIPU Technological Park (PTI) in partnership with SENAI/PR, using the FIEP Observatories. As result, this research describes through data collection a favorable scenario for the technical feasibility of the use of biomass for the energetic use of biogas for power generation. The distributed generation of electricity from the use of biomass could help Brazil in the preservation of the environment as well as contribute to the diversification of the energy matrix, economic development and broadening access to energy in isolated communities.

Suggested Citation

  • Ferreira, L.R.A. & Otto, R.B. & Silva, F.P. & De Souza, S.N.M. & De Souza, S.S. & Ando Junior, O.H., 2018. "Review of the energy potential of the residual biomass for the distributed generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 440-455.
  • Handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:440-455
    DOI: 10.1016/j.rser.2018.06.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118304702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.06.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moraes, Bruna S. & Zaiat, Marcelo & Bonomi, Antonio, 2015. "Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 888-903.
    2. Rao, M. S. & Singh, S. P. & Singh, A. K. & Sodha, M. S., 2000. "Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage," Applied Energy, Elsevier, vol. 66(1), pages 75-87, May.
    3. Lora, E.S. & Andrade, R.V., 2009. "Biomass as energy source in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 777-788, May.
    4. Afazeli, Hadi & Jafari, Ali & Rafiee, Shahin & Nosrati, Mohsen, 2014. "An investigation of biogas production potential from livestock and slaughterhouse wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 380-386.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borges, Cosme P. & Silberg, Timothy R. & Uriona-Maldonado, Mauricio & Vaz, Caroline R., 2023. "Scaling actors’ perspectives about innovation system functions: Diffusion of biogas in Brazil," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    2. Edvaldo Pereira Santos Júnior & Elias Gabriel Magalhães Silva & Maria Helena de Sousa & Emmanuel Damilano Dutra & Antonio Samuel Alves da Silva & Aldo Torres Sales & Everardo Valadares de Sa Barretto , 2023. "Potentialities and Impacts of Biomass Energy in the Brazilian Northeast Region," Energies, MDPI, vol. 16(9), pages 1-18, May.
    3. Vilvert, Amanda Junkes & Saldeira Junior, Joaquim Carlos & Bautitz, Ivonete Rossi & Zenatti, Dilcemara Cristina & Andrade, Maurício Guy & Hermes, Eliane, 2020. "Minimization of energy demand in slaughterhouses: Estimated production of biogas generated from the effluent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Jiang, Lu & Xue, Bing & Ma, Zhixiao & Yu, Lu & Huang, Beijia & Chen, Xingpeng, 2020. "A life-cycle based co-benefits analysis of biomass pellet production in China," Renewable Energy, Elsevier, vol. 154(C), pages 445-452.
    5. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2021. "Assessing the influence of legal constraints on the integration of renewable energy technologies in polygeneration systems for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Aghaalikhani, Arash & Schmid, Johannes C. & Borello, Domenico & Fuchs, Joseph & Benedikt, Florian & Hofbauer, Herman & Rispoli, Franco & Henriksen, Ulrick B. & Sárossy, Zsuzsa & Cedola, Luca, 2019. "Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation," Renewable Energy, Elsevier, vol. 143(C), pages 703-718.
    7. Durval Maluf Filho & Suani Teixeira Coelho & Danilo Perecin, 2022. "Opportunities and Challenges of Gasification of Municipal Solid Waste (MSW) in Brazil," Energies, MDPI, vol. 15(8), pages 1-13, April.
    8. Schwerz, Felipe & Neto, Durval Dourado & Caron, Braulio Otomar & Nardini, Claiton & Sgarbossa, Jaqueline & Eloy, Elder & Behling, Alexandre & Elli, Elvis Felipe & Reichardt, Klaus, 2020. "Biomass and potential energy yield of perennial woody energy crops under reduced planting spacing," Renewable Energy, Elsevier, vol. 153(C), pages 1238-1250.
    9. Udayan Singh & Erica M. Loudermilk & Lisa M. Colosi, 2021. "Accounting for the role of transport and storage infrastructure costs in carbon negative bioenergy deployment," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 144-164, February.
    10. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Freitas, F.F. & De Souza, S.S. & Ferreira, L.R.A. & Otto, R.B. & Alessio, F.J. & De Souza, S.N.M. & Venturini, O.J. & Ando Junior, O.H., 2019. "The Brazilian market of distributed biogas generation: Overview, technological development and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 146-157.
    13. Santos Júnior, Edvaldo Pereira & Silva, Magno Vamberto Batista da & Simioni, Flávio José & Rotella Junior, Paulo & Menezes, Rômulo Simões Cezar & Coelho Junior, Luiz Moreira, 2022. "Location and concentration of the forest bioelectricity supply in Brazil: A space-time analysis," Renewable Energy, Elsevier, vol. 199(C), pages 710-719.
    14. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    17. Rey, J.R.C. & Pio, D.T. & Tarelho, L.A.C., 2021. "Biomass direct gasification for electricity generation and natural gas replacement in the lime kilns of the pulp and paper industry: A techno-economic analysis," Energy, Elsevier, vol. 237(C).
    18. Ali, Ramadan Hefny & Abdel Samee, Ahmed A. & Maghrabie, Hussein M., 2023. "Thermodynamic analysis of a cogeneration system in pulp and paper industry under singular and hybrid operating modes," Energy, Elsevier, vol. 263(PE).
    19. Claudia Patricia Pérez-Rodríguez & Luis Alberto Ríos & Carmen Sofía Duarte González & Andres Montaña & Catalina García-Marroquín, 2022. "Harnessing Residual Biomass as a Renewable Energy Source in Colombia: A Potential Gasification Scenario," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    20. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    21. Wajahat Ullah Khan Tareen & Muhammad Tariq Dilbar & Muhammad Farhan & Muhammad Ali Nawaz & Ali Waqar Durrani & Kamran Ali Memon & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Muhammad Amir & Mu, 2019. "Present Status and Potential of Biomass Energy in Pakistan Based on Existing and Future Renewable Resources," Sustainability, MDPI, vol. 12(1), pages 1-40, December.
    22. Caiado Couto, Lilia & Campos, Luiza C. & da Fonseca-Zang, Warde & Zang, Joachim & Bleischwitz, Raimund, 2021. "Water, waste, energy and food nexus in Brazil: Identifying a resource interlinkage research agenda through a systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    2. Zareei, Samira, 2018. "Project scheduling for constructing biogas plant using critical path method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 756-759.
    3. Julio Cesar Silva Junior & Andrei Lucas Michaelsen & Mauro Scalvi & Miguel Gomes Pacheco, 2020. "Forecast of electric energy generation potential from swine manure in Santa Catarina, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2305-2319, March.
    4. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    5. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    6. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    7. Virmond, Elaine & Schacker, Robson L. & Albrecht, Waldir & Althoff, Chtistine A. & de Souza, Maurício & Moreira, Regina F.P.M. & José, Humberto J., 2011. "Organic solid waste originating from the meat processing industry as an alternative energy source," Energy, Elsevier, vol. 36(6), pages 3897-3906.
    8. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Power generation from sugarcane biomass – A complementary option to hydroelectricity in Nepal and Brazil," Energy, Elsevier, vol. 48(1), pages 241-254.
    9. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    10. Fujii, Shoma & Horie, Naoyuki & Nakaibayashi, Ko & Kanematsu, Yuichiro & Kikuchi, Yasunori & Nakagaki, Takao, 2019. "Design of zeolite boiler in thermochemical energy storage and transport system utilizing unused heat from sugar mill," Applied Energy, Elsevier, vol. 238(C), pages 561-571.
    11. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    12. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    13. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
    14. Eufrade-Junior, Humberto de Jesus & Guerra, Saulo Philipe Sebastião & Sansígolo, Cláudio Angeli & Ballarin, Adriano Wagner, 2018. "Management of Eucalyptus short-rotation coppice and its outcome on fuel quality," Renewable Energy, Elsevier, vol. 121(C), pages 309-314.
    15. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Arshad, Muhammad & Ahmed, Sibtain, 2016. "Cogeneration through bagasse: A renewable strategy to meet the future energy needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 732-737.
    17. Nakashima, R.N. & de Oliveira Junior, S., 2020. "Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1969-1978.
    18. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Lopes Silva, Diogo Aparecido & Delai, Ivete & Delgado Montes, Mary Laura & Roberto Ometto, Aldo, 2014. "Life cycle assessment of the sugarcane bagasse electricity generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 532-547.
    20. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Khan, M.Z.H. & Sarker, M., 2016. "Feasibility analysis of implementing anaerobic digestion as a potential energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 124-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:440-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.