IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v117y2020ics1364032119307221.html
   My bibliography  Save this article

Estimating unit production cost, carbon intensity, and carbon abatement cost of electricity generation from bioenergy feedstocks in Georgia, United States

Author

Listed:
  • Masum, Md Farhad Hossain
  • Dwivedi, Puneet
  • Anderson, William F.

Abstract

In Georgia, the coal-based electricity generation emitted about 26% of the total greenhouse gas (GHG) emissions in 2016. Considering the availability of biomass resources in the state and advent of emerging technologies like torrefaction, biomass-based feedstocks could be directly used in existing coal-based power plants. We performed economic and environmental analyses of electricity derived from nine feedstocks (loblolly pine, corn stover, cotton stalks, bermudagrass, switchgrass, napier grass, giant reed, energycane, and miscanthus) over 25 years relative to coal-based electricity in Georgia. We assumed processing biomass via torrefaction before using the same to substitute coal at the power plant. Pine chips were the least expensive ($113 MWh−1) and the least GHG intensive (134 kg CO2e MWh−1) option for generating electricity, with the lowest abatement cost ($17 t CO2e−1). Based on sensitivity analysis, the abatement cost could be as low as $8 t CO2e−1 for a 900 MW power plant, the most common capacity of coal-based electricity generating units in Georgia. Between the two agricultural residues, cotton stalk ($26 t CO2e−1) had a lower abatement cost than corn stover ($34 t CO2e−1). Among perennial grasses, switchgrass and giant reed had the lowest carbon abatement cost (about $25 t CO2e−1) because of their low unit production cost of electricity. Other perennial grasses had comparable abatement costs, ranging between $28 and $30 t CO2e−1, except napier grass and energycane, which had the highest abatement cost (about $38 t CO2e−1). A carbon tax of $40 t CO2e−1 could make bioenergy feedstocks found in Georgia competitive against coal for reducing carbon emissions from the electricity sector.

Suggested Citation

  • Masum, Md Farhad Hossain & Dwivedi, Puneet & Anderson, William F., 2020. "Estimating unit production cost, carbon intensity, and carbon abatement cost of electricity generation from bioenergy feedstocks in Georgia, United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
  • Handle: RePEc:eee:rensus:v:117:y:2020:i:c:s1364032119307221
    DOI: 10.1016/j.rser.2019.109514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119307221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sahoo, K. & Hawkins, G.L. & Yao, X.A. & Samples, K. & Mani, S., 2016. "GIS-based biomass assessment and supply logistics system for a sustainable biorefinery: A case study with cotton stalks in the Southeastern US," Applied Energy, Elsevier, vol. 182(C), pages 260-273.
    2. Loeffler, Dan & Anderson, Nathaniel, 2014. "Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA," Applied Energy, Elsevier, vol. 113(C), pages 67-77.
    3. Adams, P.W.R. & Shirley, J.E.J. & McManus, M.C., 2015. "Comparative cradle-to-gate life cycle assessment of wood pellet production with torrefaction," Applied Energy, Elsevier, vol. 138(C), pages 367-380.
    4. Kulkarni, Avanti & Baker, Ryan & Abdoulmomine, Nourredine & Adhikari, Sushil & Bhavnani, Sushil, 2016. "Experimental study of torrefied pine as a gasification fuel using a bubbling fluidized bed gasifier," Renewable Energy, Elsevier, vol. 93(C), pages 460-468.
    5. Dwivedi, Puneet & Bailis, Robert & Stainback, Andrew & Carter, Douglas R., 2012. "Impact of payments for carbon sequestered in wood products and avoided carbon emissions on the profitability of NIPF landowners in the US South," Ecological Economics, Elsevier, vol. 78(C), pages 63-69.
    6. Huang, Ching-Hsun & Bagdon, Benjamin A., 2018. "Quantifying environmental and health benefits of using woody biomass for electricity generation in the Southwestern United States," Journal of Forest Economics, Elsevier, vol. 32(C), pages 123-134.
    7. Sahoo, Kamalakanta & Bilek, Edward & Bergman, Richard & Mani, Sudhagar, 2019. "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, Elsevier, vol. 235(C), pages 578-590.
    8. Galik, Christopher S. & Abt, Robert C. & Latta, Gregory & Vegh, Tibor, 2015. "The environmental and economic effects of regional bioenergy policy in the southeastern U.S," Energy Policy, Elsevier, vol. 85(C), pages 335-346.
    9. Pierre-Luc Lizotte & Philippe Savoie & Alain De Champlain, 2015. "Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada," Energies, MDPI, vol. 8(6), pages 1-12, May.
    10. Brown, Marilyn A. & Favero, Alice & Thomas, Valerie M. & Banboukian, Aline, 2019. "The economic and environmental performance of biomass as an “intermediate” resource for power production," Utilities Policy, Elsevier, vol. 58(C), pages 52-62.
    11. Md Farhad H. Masum & Kamalakanta Sahoo & Puneet Dwivedi, 2019. "Ascertaining the Trajectory of Wood-Based Bioenergy Development in the United States Based on Current Economic, Social, and Environmental Constructs," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 169-193, October.
    12. Thakur, Amit & Canter, Christina E. & Kumar, Amit, 2014. "Life-cycle energy and emission analysis of power generation from forest biomass," Applied Energy, Elsevier, vol. 128(C), pages 246-253.
    13. Shumaker, George A. & Luke-Morgan, Audrey S. & McKissick, John C., 2009. "The Economic Feasibility of Using Georgia Biomass for Electrical Energy Production," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 27(1-2), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bressanin, Jéssica Marcon & Guimarães, Henrique Real & Chagas, Mateus Ferreira & Sampaio, Isabelle Lobo de Mesquita & Klein, Bruno Colling & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Morais, E, 2021. "Advanced technologies for electricity production in the sugarcane value chain are a strategic option in a carbon reward policy context," Energy Policy, Elsevier, vol. 159(C).
    2. Zhang, Qi & Gu, Baihe & Zhang, Haiying & Ji, Qiang, 2023. "Emission reduction mode of China's provincial transportation sector: Based on “Energy+” carbon efficiency evaluation," Energy Policy, Elsevier, vol. 177(C).
    3. Shoufu Yang & Hanhui Zhao & Yiming Chen & Zitian Fu & Chaohao Sun & Tsangyao Chang, 2023. "The Impact of Digital Enterprise Agglomeration on Carbon Intensity: A Study Based on the Extended Spatial STIRPAT Model," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    4. Selim Karkour & Yuki Ichisugi & Amila Abeynayaka & Norihiro Itsubo, 2020. "External-Cost Estimation of Electricity Generation in G20 Countries: Case Study Using a Global Life-Cycle Impact-Assessment Method," Sustainability, MDPI, vol. 12(5), pages 1-35, March.
    5. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Nandimandalam, Hariteja & Gude, Veera Gnaneswar, 2022. "Renewable wood residue sources as potential alternative for fossil fuel dominated electricity mix for regions in Mississippi: A techno-economic analysis," Renewable Energy, Elsevier, vol. 200(C), pages 1105-1119.
    7. Masum, Md Farhad Hossain & Dwivedi, Puneet & De La Torre, Rafael, 2021. "Assessing economic and environmental feasibility of wood-based electricity generation in South America: A case study from Colombia," Forest Policy and Economics, Elsevier, vol. 124(C).
    8. Weiwei Wang, 2023. "Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China," Energies, MDPI, vol. 16(6), pages 1-22, March.
    9. Jenny Frank & Obste Therasme & Timothy A. Volk & Tristan Brown & Robert W. Malmsheimer & Marie-Odile Fortier & Mark H. Eisenbies & HakSoo Ha & Justin Heavey, 2022. "Integrated Stochastic Life Cycle Assessment and Techno-Economic Analysis for Shrub Willow Production in the Northeastern United States," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    10. Thanarat Pratumwan & Warunee Tia & Adisak Nathakaranakule & Somchart Soponronnarit, 2022. "Grid-connected Electricity Generation Potential from Energy Crops: A Case Study of Marginal Land in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 62-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raghava Rao Kommalapati & Iqbal Hossan & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    2. Sahoo, Kamalakanta & Bilek, Edward & Bergman, Richard & Mani, Sudhagar, 2019. "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, Elsevier, vol. 235(C), pages 578-590.
    3. Albers, Ariane & Collet, Pierre & Lorne, Daphné & Benoist, Anthony & Hélias, Arnaud, 2019. "Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France," Applied Energy, Elsevier, vol. 239(C), pages 316-330.
    4. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    5. Sahoo, Kamalakanta & Mani, Sudhagar, 2019. "Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Masum, Md Farhad Hossain & Dwivedi, Puneet & De La Torre, Rafael, 2021. "Assessing economic and environmental feasibility of wood-based electricity generation in South America: A case study from Colombia," Forest Policy and Economics, Elsevier, vol. 124(C).
    7. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    8. Efthymios Rodias & Remigio Berruto & Dionysis Bochtis & Alessandro Sopegno & Patrizia Busato, 2019. "Green, Yellow, and Woody Biomass Supply-Chain Management: A Review," Energies, MDPI, vol. 12(15), pages 1-22, August.
    9. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Chopin, Pierre & Guindé, Loïc & Causeret, François & Bergkvist, Göran & Blazy, Jean-Marc, 2019. "Integrating stakeholder preferences into assessment of scenarios for electricity production from locally produced biomass on a small island," Renewable Energy, Elsevier, vol. 131(C), pages 128-136.
    11. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    12. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
    14. Yoonah Jeong & Jae-Sung Kim & Ye-Eun Lee & Dong-Chul Shin & Kwang-Ho Ahn & Jinhong Jung & Kyeong-Ho Kim & Min-Jong Ku & Seung-Mo Kim & Chung-Hwan Jeon & I-Tae Kim, 2023. "Investigation and Optimization of Co-Combustion Efficiency of Food Waste Biochar and Coal," Sustainability, MDPI, vol. 15(19), pages 1-12, October.
    15. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Susaeta, Andres & Carter, Douglas R. & Adams, Damian C., 2014. "Impacts of Climate Change on Economics of Forestry and Adaptation Strategies in the Southern United States," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 46(2), pages 1-16, May.
    18. Barta-Rajnai, E. & Wang, L. & Sebestyén, Z. & Barta, Z. & Khalil, R. & Skreiberg, Ø. & Grønli, M. & Jakab, E. & Czégény, Z., 2017. "Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce," Applied Energy, Elsevier, vol. 204(C), pages 1043-1054.
    19. Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
    20. Lin, Yi-Pin & Wang, Wen-Hsian & Pan, Shu-Yuan & Ho, Chang-Ching & Hou, Chin-Jen & Chiang, Pen-Chi, 2016. "Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry," Applied Energy, Elsevier, vol. 183(C), pages 369-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:117:y:2020:i:c:s1364032119307221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.