IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v128y2014icp246-253.html
   My bibliography  Save this article

Life-cycle energy and emission analysis of power generation from forest biomass

Author

Listed:
  • Thakur, Amit
  • Canter, Christina E.
  • Kumar, Amit

Abstract

Forest harvest residues, which include limbs, branches, and tree tops, have the potential to generate energy. This paper uses a life-cycle assessment to determine the energy input-to-output ratios for each unit operation in the use of these residues for power generation. Two preparation options for obtaining the biomass were evaluated. For Option 1, the forest residues were chipped at the landing, while for Option 2 they were bundled and chipped at the power plant. Energy use and greenhouse gas (GHG) emissions were found for power plants sizes ranging from 10 to 300MW. For power plants with capacities greater than 30MW, the transportation of either bundles or woodchips to the power plant used the most energy, especially at larger power plant sizes. Option 1 used less energy than Option 2 for all power plant sizes, with the difference between the two becoming smaller for larger power plants. For the life-cycle GHG emissions, Option 1 ranges from 14.71 to 19.51g-CO2eq/kWh depending on the power plant size. Option 2 ranges from 21.42 to 20.90g-CO2eq/kWh. The results are not linear and are close to equal at larger power plant sizes. The GHG emissions increase with increasing moisture content. For a 300MW power plant with chipping at the landing, the GHG emissions range from 11.17 to 22.24g-CO2eq/kWh for moisture contents from 15% to 50%. The sensitivity analysis showed both energy use and GHG emissions are most sensitive to moisture content and then plant lifetime. For the equipment, both the energy use and GHG emissions are most sensitive to changes in the fuel consumption and load capacity of the chip van and the log-haul truck used to transport either bundles or wood chips to the power plant.

Suggested Citation

  • Thakur, Amit & Canter, Christina E. & Kumar, Amit, 2014. "Life-cycle energy and emission analysis of power generation from forest biomass," Applied Energy, Elsevier, vol. 128(C), pages 246-253.
  • Handle: RePEc:eee:appene:v:128:y:2014:i:c:p:246-253
    DOI: 10.1016/j.apenergy.2014.04.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914004486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.04.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Royo, Javier & Sebastián, Fernando & García-Galindo, Daniel & Gómez, Maider & Díaz, Maryori, 2012. "Large-scale analysis of GHG (greenhouse gas) reduction by means of biomass co-firing at country-scale: Application to the Spanish case," Energy, Elsevier, vol. 48(1), pages 255-267.
    2. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    3. Sarkar, Susanjib & Kumar, Amit & Sultana, Arifa, 2011. "Biofuels and biochemicals production from forest biomass in Western Canada," Energy, Elsevier, vol. 36(10), pages 6251-6262.
    4. Heller, Martin C & Keoleian, Gregory A & Mann, Margaret K & Volk, Timothy A, 2004. "Life cycle energy and environmental benefits of generating electricity from willow biomass," Renewable Energy, Elsevier, vol. 29(7), pages 1023-1042.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    2. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems," Sustainability, MDPI, vol. 8(11), pages 1-12, November.
    3. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    4. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    5. Yang, Qing & Han, Fei & Chen, Yingquan & Yang, Haiping & Chen, Hanping, 2016. "Greenhouse gas emissions of a biomass-based pyrolysis plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1580-1590.
    6. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    7. Tabata, Tomohiro & Okuda, Takaaki, 2012. "Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan," Energy, Elsevier, vol. 45(1), pages 944-951.
    8. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    9. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Maung, Thein A. & McCarl, Bruce A., 2013. "Economic factors influencing potential use of cellulosic crop residues for electricity generation," Energy, Elsevier, vol. 56(C), pages 81-91.
    11. Guohua Feng & Chuan Wang & Apostolos Serletis, 2018. "Shadow prices of $$\hbox {CO}_{2}$$ CO 2 emissions at US electric utilities: a random-coefficient, random-directional-vector directional output distance function approach," Empirical Economics, Springer, vol. 54(1), pages 231-258, February.
    12. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    13. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    14. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    15. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    16. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
    17. Feng, Ping & Hao, Lifang & Huo, Chaofei & Wang, Ze & Lin, Weigang & Song, Wenli, 2014. "Rheological behavior of coal bio-oil slurries," Energy, Elsevier, vol. 66(C), pages 744-749.
    18. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    19. Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
    20. Anders Skonhoft & Bjart Holtsmark, 2014. "The Norwegian support and subsidy of electric cars. Should it be adopted by other countries?," Working Paper Series 15814, Department of Economics, Norwegian University of Science and Technology.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:128:y:2014:i:c:p:246-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.