IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v143y2025ics0140988325001008.html
   My bibliography  Save this article

Exploring the output effects on price-induced interfuel substitution and carbon dioxide emission

Author

Listed:
  • Kang, Hyonyong
  • Suh, Dong Hee

Abstract

This study explores how output effects influence price-induced interfuel substitution and examines its impact on CO2 emissions in the Korean industrial sector. Employing the differential fuel allocation model, which incorporates output supply decisions, we decompose the price response of energy demand to identify both substitution and output effects and simulate the resulting price-induced CO2 emissions. The results provide empirical evidence of substitutable relationships among coal, oil, and electricity, particularly showing that electrification helps substitute for coal and oil. In addition, the decomposition results reveal that the output effects strengthen own-price response but weaken cross-price response, reflecting the industrial sector's tendency to adjust output supply in response to cost pressures from rising energy prices, especially oil prices. Regarding price-induced CO2 emissions, the simulation results suggest the possibility of over- or under-estimating changes in net CO2 emissions if the output effects are not considered. Notably, they reveal that a rise in oil and gas prices can lead to a reduction in net CO2 emissions due to the output effects.

Suggested Citation

  • Kang, Hyonyong & Suh, Dong Hee, 2025. "Exploring the output effects on price-induced interfuel substitution and carbon dioxide emission," Energy Economics, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:eneeco:v:143:y:2025:i:c:s0140988325001008
    DOI: 10.1016/j.eneco.2025.108277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988325001008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2025.108277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Clements, Kenneth W. & Gao, Grace, 2015. "The Rotterdam demand model half a century on," Economic Modelling, Elsevier, vol. 49(C), pages 91-103.
    2. Agyeman, Stephen Duah & Lin, Boqiang, 2022. "Nonrenewable and renewable energy substitution, and low–carbon energy transition: Evidence from North African countries," Renewable Energy, Elsevier, vol. 194(C), pages 378-395.
    3. Moody, Carlisle E., 1996. "A regional linear logit fuel demand model for electric utilities," Energy Economics, Elsevier, vol. 18(4), pages 295-314, October.
    4. Theil, Henri, 1977. "The Independent Inputs of Production," Econometrica, Econometric Society, vol. 45(6), pages 1303-1327, September.
    5. Vlachou, A. S. & Samouilidis, E. J., 1986. "Interfuel substitution : Results from several sectors of the Greek economy," Energy Economics, Elsevier, vol. 8(1), pages 39-45, January.
    6. Serletis, Apostolos & Xu, Libo, 2022. "Interfuel substitution: A copula approach," Journal of Commodity Markets, Elsevier, vol. 28(C).
    7. Thomas Bue Bjørner & Henrik Holm Jensen, 2002. "Interfuel Substitution within Industrial Companies: An Analysis Based on Panel Data at Company Level," The Energy Journal, , vol. 23(2), pages 27-50, April.
    8. Brannlund, Runar & Lundgren, Tommy, 2004. "A dynamic analysis of interfuel substitution for Swedish heating plants," Energy Economics, Elsevier, vol. 26(6), pages 961-976, November.
    9. Apostolos Serletis and Libo Xu, 2019. "Interfuel Substitution: Evidence from the Markov Switching Minflex Laurent Demand System with BEKK Errors," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    10. Urga, Giovanni & Walters, Chris, 2003. "Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand," Energy Economics, Elsevier, vol. 25(1), pages 1-21, January.
    11. Patrik Söderholm, 2000. "Environmental Regulations and Interfuel Substitution in the Power Sector: A Generalized Leontief Model," Energy & Environment, , vol. 11(1), pages 1-23, January.
    12. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
    13. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    14. Kim, Bong Chin & Labys, Walter C., 1988. "Application of the translog model of energy substitution to developing countries : The case of Korea," Energy Economics, Elsevier, vol. 10(4), pages 313-323, October.
    15. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    16. Clements, Kenneth W. & Theil, Henri, 1978. "A simple method of estimating price elasticities in international trade," Economics Letters, Elsevier, vol. 1(2), pages 133-137.
    17. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    18. Sharimakin, Akinsehinwa, 2019. "Measuring the energy input substitution and output effects of energy price changes and the implications for the environment," Energy Policy, Elsevier, vol. 133(C).
    19. Xingang, Zhao & Pingkuo, Liu, 2013. "Substitution among energy sources: An empirical analysis on biomass energy for fossil fuel of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 194-202.
    20. Salim, Ruhul A. & Hassan, Kamrul & Shafiei, Sahar, 2014. "Renewable and non-renewable energy consumption and economic activities: Further evidence from OECD countries," Energy Economics, Elsevier, vol. 44(C), pages 350-360.
    21. Apostolos Serletis, 2012. "International Evidence on Sectoral Interfuel Substitution," World Scientific Book Chapters, in: Interfuel Substitution, chapter 3, pages 37-65, World Scientific Publishing Co. Pte. Ltd..
    22. Rushdi, Ali Ahmed, 1986. "Interfuel substitution in the residential sector of South Australia," Energy Economics, Elsevier, vol. 8(3), pages 177-185, July.
    23. Patricia Renou-Maissant, 1999. "Interfuel Competition in the Industrial Sector of Seven OECD Countries," Post-Print hal-02562575, HAL.
    24. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
    25. Seale, James L. & Vorotnikova, Ekaterina & Asci, Serhat, 2014. "An empirical input allocation model for the multiproduct firm," Economics Letters, Elsevier, vol. 124(3), pages 367-369.
    26. Nurul Hossain, A.K.M. & Serletis, Apostolos, 2017. "A century of interfuel substitution," Journal of Commodity Markets, Elsevier, vol. 8(C), pages 28-42.
    27. Blackorby, Charles & Russell, R Robert, 1989. "Will the Real Elasticity of Substitution Please Stand Up? (A Comparison of the Allen/Uzawa and Morishima Elasticities)," American Economic Review, American Economic Association, vol. 79(4), pages 882-888, September.
    28. Andrew Muhammad, 2009. "Would African Countries Benefit from the Termination of Kenya’s Economic Partnership Agreement (EPA) with the EU? An Analysis of EU Demand for Imported Roses," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 220-238, February.
    29. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2011. "International evidence on aggregate short-run and long-run interfuel substitution," Energy Economics, Elsevier, vol. 33(2), pages 209-216, March.
    30. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    31. Ali Jadidzadeh & Apostolos Serletis, 2016. "Sectoral Interfuel Substitution in Canada: An Application of NQ Flexible Functional Forms," The Energy Journal, , vol. 37(2), pages 181-200, April.
    32. Soderholm, Patrik, 2000. "Fuel flexibility in the West European power sector," Resources Policy, Elsevier, vol. 26(3), pages 157-170, September.
    33. Griffin, James M & Gregory, Paul R, 1976. "An Intercountry Translog Model of Energy Substitution Responses," American Economic Review, American Economic Association, vol. 66(5), pages 845-857, December.
    34. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    35. Zhu, Manhong & Onel, Gulcan & Seale, James L., 2015. "An empirical input allocation model for the cost minimizing multiproduct firm," Economics Letters, Elsevier, vol. 132(C), pages 73-76.
    36. Hall, V. B., 1986. "Major OECD country industrial sector interfuel substitution estimates, 1960-1979," Energy Economics, Elsevier, vol. 8(2), pages 74-89, April.
    37. Barnett, William A. & Serletis, Apostolos, 2008. "Measuring Consumer Preferences and Estimating Demand Systems," MPRA Paper 12318, University Library of Munich, Germany.
    38. Berndt, Ernst R & Wood, David O, 1979. "Engineering and Econometric Interpretations of Energy-Capital Complementarity," American Economic Review, American Economic Association, vol. 69(3), pages 342-354, June.
    39. Hall, V. B., 1983. "Industrial sector interfuel substitution following the first major oil shock," Economics Letters, Elsevier, vol. 12(3-4), pages 377-382.
    40. Barnett, William A. & Jonas, Andrew B., 1983. "The Muntz-Szatz demand system : An application of a globally well behaved series expansion," Economics Letters, Elsevier, vol. 11(4), pages 337-342.
    41. Laitinen, Kenneth & Theil, Henri, 1978. "Supply and demand of the multiproduct firm," European Economic Review, Elsevier, vol. 11(2), pages 107-154, August.
    42. Andrew Muhammad, 2007. "The impact of increasing non-agricultural market access on EU demand for imported fish: implications for Lake Victoria chilled fillet exports," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 34(4), pages 461-477, December.
    43. Considine, Timothy J, 1990. "Symmetry Constraints and Variable Returns to Scale in Logit Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(3), pages 347-353, July.
    44. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    45. Considine, Timothy J., 1989. "Separability, functional form and regulatory policy in models of interfuel substitution," Energy Economics, Elsevier, vol. 11(2), pages 82-94, April.
    46. Halvorsen, Robert, 1977. "Energy Substitution in U.S. Manufacturing," The Review of Economics and Statistics, MIT Press, vol. 59(4), pages 381-388, November.
    47. Pettersson, Fredrik & Söderholm, Patrik & Lundmark, Robert, 2012. "Fuel switching and climate and energy policies in the European power generation sector: A generalized Leontief model," Energy Economics, Elsevier, vol. 34(4), pages 1064-1073.
    48. Mufutau Opeyemi Bello & Sakiru Adebola Solarin, 2022. "Searching for sustainable electricity generation: The possibility of substituting coal and natural gas with clean energy," Energy & Environment, , vol. 33(1), pages 64-84, February.
    49. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
    50. Panos Fousekis & Christos Pantzios, 1999. "A Family of Differential Input Demand Systems with Application to Greek Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 50(3), pages 549-563, September.
    51. Adetutu, Morakinyo O. & Glass, Anthony J. & Weyman-Jones, Thomas G., 2016. "Decomposing energy demand across BRIIC countries," Energy Economics, Elsevier, vol. 54(C), pages 396-404.
    52. Bousquet, Alain & Ladoux, Norbert, 2006. "Flexible versus designated technologies and interfuel substitution," Energy Economics, Elsevier, vol. 28(4), pages 426-443, July.
    53. Renou-Maissant, Patricia, 1999. "Interfuel competition in the industrial sector of seven OECD countries," Energy Policy, Elsevier, vol. 27(2), pages 99-110, February.
    54. Urga, Giovanni, 1999. "An application of dynamic specifications of factor demand equations to interfuel substitution in US industrial energy demand," Economic Modelling, Elsevier, vol. 16(4), pages 503-513, December.
    55. Nicola Rossi, 1984. "The Estimation of Product Supply and Input Demand by the Differential Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 368-375.
    56. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    57. Theil, Henri, 1979. "A differential approach to input-output analysis," Economics Letters, Elsevier, vol. 3(4), pages 381-385.
    58. Considine, Timothy & Manderson, Edward, 2014. "The role of energy conservation and natural gas prices in the costs of achieving California's renewable energy goals," Energy Economics, Elsevier, vol. 44(C), pages 291-301.
    59. Griffin, James M, 1977. "Inter-fuel Substitution Possibilities: A Translog Application to Intercountry Data," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(3), pages 755-770, October.
    60. McElroy, Marjorie B., 1977. "Goodness of fit for seemingly unrelated regressions : Glahn's R2y.x and Hooper's r2," Journal of Econometrics, Elsevier, vol. 6(3), pages 381-387, November.
    61. Considine, Timothy J., 2018. "Estimating concave substitution possibilities with non-stationary data using the dynamic linear logit demand model," Economic Modelling, Elsevier, vol. 72(C), pages 22-30.
    62. Dong Hee Suh & Charles B. Moss, 2017. "Decompositions of corn price effects: implications for feed grain demand and livestock supply," Agricultural Economics, International Association of Agricultural Economists, vol. 48(4), pages 491-500, July.
    63. Bölük, Gülden & Koç, A. Ali, 2010. "Electricity demand of manufacturing sector in Turkey: A translog cost approach," Energy Economics, Elsevier, vol. 32(3), pages 609-615, May.
    64. Serletis, Apostolos & Shahmoradi, Asghar, 2008. "Semi-nonparametric estimates of interfuel substitution in U.S. energy demand," Energy Economics, Elsevier, vol. 30(5), pages 2123-2133, September.
    65. Dong Hee Suh, 2019. "Interfuel substitution effects of biofuel use on carbon dioxide emissions: evidence from the transportation sector," Applied Economics, Taylor & Francis Journals, vol. 51(31), pages 3413-3422, July.
    66. Suh, Dong Hee, 2016. "Interfuel substitution and biomass use in the U.S. industrial sector: A differential approach," Energy, Elsevier, vol. 102(C), pages 24-30.
    67. Guilkey, David K & Lovell, C A Knox & Sickles, Robin C, 1983. "A Comparison of the Performance of Three Flexible Functional Forms," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(3), pages 591-616, October.
    68. Kumar, Anil & Kumar, Nitin & Baredar, Prashant & Shukla, Ashish, 2015. "A review on biomass energy resources, potential, conversion and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 530-539.
    69. Diewert, W E, 1971. "An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function," Journal of Political Economy, University of Chicago Press, vol. 79(3), pages 481-507, May-June.
    70. Cho, Won G. & Nam, Kiseok & Pagan, Jose A., 2004. "Economic growth and interfactor/interfuel substitution in Korea," Energy Economics, Elsevier, vol. 26(1), pages 31-50, January.
    71. Thomas Bue Bjorner & Henrik Holm Jensen, 2002. "Interfuel Substitution within Industrial Companies: An Analysis Based on Panel Data at Company Level," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 27-50.
    72. Apergis, Nicholas & Payne, James E., 2012. "Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model," Energy Economics, Elsevier, vol. 34(3), pages 733-738.
    73. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
    74. Roy, Joyashree & Sanstad, Alan H. & Sathaye, Jayant A. & Khaddaria, Raman, 2006. "Substitution and price elasticity estimates using inter-country pooled data in a translog cost model," Energy Economics, Elsevier, vol. 28(5-6), pages 706-719, November.
    75. James Ko & Carol Dahl, 2001. "Interfuel substitution in US electricity generation," Applied Economics, Taylor & Francis Journals, vol. 33(14), pages 1833-1843.
    76. Considine, Timothy J & Mount, Timothy D, 1984. "The Use of Linear Logit Models for Dynamic Input Demand Systems," The Review of Economics and Statistics, MIT Press, vol. 66(3), pages 434-443, August.
    77. Wesseh, Presley K. & Lin, Boqiang, 2016. "Output and substitution elasticities of energy and implications for renewable energy expansion in the ECOWAS region," Energy Policy, Elsevier, vol. 89(C), pages 125-137.
    78. Mufutau Opeyemi, Bello, 2021. "Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy," Energy, Elsevier, vol. 228(C).
    79. Jones, Clifton T, 1995. "A Dynamic Analysis of Interfuel Substitution in U.S. Industrial Energy Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 459-465, October.
    80. Brown, Mark G & Lee, Jonq-Ying & Seale, James L, Jr, 1995. "A Family of Inverse Demand Systems and Choice of Functional Form," Empirical Economics, Springer, vol. 20(3), pages 519-530.
    81. Fuss, Melvyn A., 1977. "The demand for energy in Canadian manufacturing : An example of the estimation of production structures with many inputs," Journal of Econometrics, Elsevier, vol. 5(1), pages 89-116, January.
    82. Marques, António Cardoso & Fuinhas, José Alberto & Pereira, Diogo André, 2018. "Have fossil fuels been substituted by renewables? An empirical assessment for 10 European countries," Energy Policy, Elsevier, vol. 116(C), pages 257-265.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, A. K. M. Nurul & Serletis, Apostolos, 2020. "Biofuel substitution in the U.S. transportation sector," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    2. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
    3. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Hoy, Kyle A. & Wrenn, Douglas H., 2018. "Unconventional energy, taxation, and interstate welfare: An analysis of Pennsylvania's severance tax policy," Energy Economics, Elsevier, vol. 73(C), pages 53-65.
    5. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    6. Serletis, Apostolos & Xu, Libo, 2022. "Interfuel substitution: A copula approach," Journal of Commodity Markets, Elsevier, vol. 28(C).
    7. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
    8. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2011. "International evidence on aggregate short-run and long-run interfuel substitution," Energy Economics, Elsevier, vol. 33(2), pages 209-216, March.
    9. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2009. "On interfuel substitution : some international evidence," Policy Research Working Paper Series 5026, The World Bank.
    10. Nurul Hossain, A.K.M. & Serletis, Apostolos, 2017. "A century of interfuel substitution," Journal of Commodity Markets, Elsevier, vol. 8(C), pages 28-42.
    11. Ali Jadidzadeh & Apostolos Serletis, 2016. "Sectoral Interfuel Substitution in Canada: An Application of NQ Flexible Functional Forms," The Energy Journal, , vol. 37(2), pages 181-200, April.
    12. Dong Hee Suh & Charles B. Moss, 2017. "Dynamic adjustment of ethanol demand to crude oil prices: implications for mandated ethanol usage," Empirical Economics, Springer, vol. 52(4), pages 1587-1607, June.
    13. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    14. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
    15. Bello, Mufutau Opeyemi & Ch'ng, Kean Siang, 2024. "Path to clean and sustainable energy from nuclear and renewable sources: Evidence from France," Utilities Policy, Elsevier, vol. 88(C).
    16. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
    17. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    18. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
    19. Shahiduzzaman, M.D. & Alam, Khorshed, . "Interfuel substitution in Australia: a way forward to achieve environmental sustainability," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(01).
    20. Considine, Timothy J., 2018. "Estimating concave substitution possibilities with non-stationary data using the dynamic linear logit demand model," Economic Modelling, Elsevier, vol. 72(C), pages 22-30.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • D2 - Microeconomics - - Production and Organizations
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:143:y:2025:i:c:s0140988325001008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.