IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v228y2021ics0360544221007684.html
   My bibliography  Save this article

Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy

Author

Listed:
  • Mufutau Opeyemi, Bello

Abstract

Globally, energy consumption profile is largely dominated by fossil fuels with non-renewable energy sources accounting for as high as 84% of the total energy mix in 2019. Non-renewable energy resources emit high carbon and are subject to resource depletion which create concerns over environmental safety and resource sustainability. To correct these scenarios, there is need to rejig energy mix of individual countries by reducing the share of non-renewable energy and increase that of renewables. Nigeria is one of the countries which has a significant proportion of its energy consumption accounted for by non-renewable energy sources. This study therefore aims to examine the interfuel substitution possibility between renewable and non-renewable energy in Nigeria for the period 1987–2016. Owing to the existence of contemporaneous cross-error correlation in the system of equations which violates a key assumption of the Ordinary Least Squares (OLS) estimation technique, the seemingly unrelated regression (SUR) procedure was employed to estimate the parameters. The results show substantial evidence of substitution possibilities between renewable and non-renewable energy. To maximally actualise the potential of renewable energy in the country, the study recommends that the government should, especially at this developmental stage, design and develop an integrated renewable energy planning and investment that will promote investment in research, market development and regulation of renewable energy resources.

Suggested Citation

  • Mufutau Opeyemi, Bello, 2021. "Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy," Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221007684
    DOI: 10.1016/j.energy.2021.120519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221007684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vlachou, A. S. & Samouilidis, E. J., 1986. "Interfuel substitution : Results from several sectors of the Greek economy," Energy Economics, Elsevier, vol. 8(1), pages 39-45, January.
    2. Shi, Xunpeng, 2016. "The future of ASEAN energy mix: A SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 672-680.
    3. Ahmad, Nisar & Aghdam, Reza FathollahZadeh & Butt, Irfan & Naveed, Amjad, 2020. "Citation-based systematic literature review of energy-growth nexus: An overview of the field and content analysis of the top 50 influential papers," Energy Economics, Elsevier, vol. 86(C).
    4. Wang, Ying & Zhang, Dayong & Ji, Qiang & Shi, Xunpeng, 2020. "Regional renewable energy development in China: A multidimensional assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Yang, Mian & Fan, Ying & Yang, Fuxia & Hu, Hui, 2014. "Regional disparities in carbon dioxide reduction from China's uniform carbon tax: A perspective on interfactor/interfuel substitution," Energy, Elsevier, vol. 74(C), pages 131-139.
    6. Oleksandr Sabishchenko & Rafał Rębilas & Norbert Sczygiol & Mariusz Urbański, 2020. "Ukraine Energy Sector Management Using Hybrid Renewable Energy Systems," Energies, MDPI, vol. 13(7), pages 1-20, April.
    7. Hall, V. B., 1986. "Major OECD country industrial sector interfuel substitution estimates, 1960-1979," Energy Economics, Elsevier, vol. 8(2), pages 74-89, April.
    8. Lin, Boqiang & Li, Jianglong, 2014. "The rebound effect for heavy industry: Empirical evidence from China," Energy Policy, Elsevier, vol. 74(C), pages 589-599.
    9. Menegaki, Angeliki N. & Marques, António Cardoso & Fuinhas, José Alberto, 2017. "Redefining the energy-growth nexus with an index for sustainable economic welfare in Europe," Energy, Elsevier, vol. 141(C), pages 1254-1268.
    10. Lin, Boqiang & Atsagli, Philip & Dogah, Kingsley E., 2016. "Ghanaian energy economy: Inter-production factors and energy substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1260-1269.
    11. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    12. Magnus, Jan R, 1979. "Substitution between Energy and Non-Energy Inputs in the Netherlands, 1950-1976," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 20(2), pages 465-484, June.
    13. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    14. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    15. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    16. Suh, Dong Hee, 2016. "Interfuel substitution and biomass use in the U.S. industrial sector: A differential approach," Energy, Elsevier, vol. 102(C), pages 24-30.
    17. Zha, Donglan & Ding, Ning, 2014. "Elasticities of substitution between energy and non-energy inputs in China power sector," Economic Modelling, Elsevier, vol. 38(C), pages 564-571.
    18. Douglas Mugabe & Levan Elbakidze & Gulnara Zaynutdinova, 2020. "Elasticity of substitution and technical efficiency: evidence from the US electricity generation," Applied Economics, Taylor & Francis Journals, vol. 52(16), pages 1789-1805, April.
    19. Fuss, Melvyn A., 1977. "The demand for energy in Canadian manufacturing : An example of the estimation of production structures with many inputs," Journal of Econometrics, Elsevier, vol. 5(1), pages 89-116, January.
    20. Shi, Xunpeng & Liao, Xun & Li, Yanfei, 2020. "Quantification of fresh water consumption and scarcity footprints of hydrogen from water electrolysis: A methodology framework," Renewable Energy, Elsevier, vol. 154(C), pages 786-796.
    21. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    22. Hossain, A. K. M. Nurul & Serletis, Apostolos, 2020. "Biofuel substitution in the U.S. transportation sector," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    23. Lin, Boqiang & Ankrah, Isaac, 2019. "On Nigeria's renewable energy program: Examining the effectiveness, substitution potential, and the impact on national output," Energy, Elsevier, vol. 167(C), pages 1181-1193.
    24. World Bank, 2017. "World Development Indicators 2017," World Bank Publications - Books, The World Bank Group, number 26447.
    25. Uri, Noel D., 1979. "Energy demand and interfuel substitution in India," European Economic Review, Elsevier, vol. 12(2), pages 181-190, April.
    26. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
    27. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2015. "Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries," Applied Economics, Taylor & Francis Journals, vol. 47(14), pages 1438-1459, March.
    28. Lin, Boqiang & Atsagli, Philip, 2017. "Energy consumption, inter-fuel substitution and economic growth in Nigeria," Energy, Elsevier, vol. 120(C), pages 675-685.
    29. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    30. Hafezali Iqbal Hussain & Beata Slusarczyk & Fakarudin Kamarudin & Hassanudin Mohd Thas Thaker & Katarzyna Szczepańska-Woszczyna, 2020. "An Investigation of an Adaptive Neuro-Fuzzy Inference System to Predict the Relationship among Energy Intensity, Globalization, and Financial Development in Major ASEAN Economies," Energies, MDPI, vol. 13(4), pages 1-17, February.
    31. Wesseh, Presley K. & Lin, Boqiang, 2018. "Energy consumption, fuel substitution, technical change, and economic growth: Implications for CO2 mitigation in Egypt," Energy Policy, Elsevier, vol. 117(C), pages 340-347.
    32. Diewert, W E, 1971. "An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function," Journal of Political Economy, University of Chicago Press, vol. 79(3), pages 481-507, May-June.
    33. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
    34. Wesseh, Presley K. & Lin, Boqiang, 2016. "Output and substitution elasticities of energy and implications for renewable energy expansion in the ECOWAS region," Energy Policy, Elsevier, vol. 89(C), pages 125-137.
    35. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
    36. Tiba, Sofien, 2019. "Revisiting and revising the energy-growth nexus: A non-linear modeling analysis," Energy, Elsevier, vol. 178(C), pages 667-675.
    37. Fan, Weiyang & Hao, Yu, 2020. "An empirical research on the relationship amongst renewable energy consumption, economic growth and foreign direct investment in China," Renewable Energy, Elsevier, vol. 146(C), pages 598-609.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    2. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    3. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Hao & Yang, Ruitao & Wan, Rong & Shen, Lu, 2023. "Comparison of the experimental and numerical results of coaxial-type and U-type deep-buried pipes’ heat transfer performances," Renewable Energy, Elsevier, vol. 210(C), pages 95-106.
    4. Muhammad Mahad Malik & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Bader Alharbi & Hamoud Alafnan & Halemah Alshehry, 2023. "Climate Change Impacts Quantification on the Domestic Side of Electrical Grid and Respective Mitigation Strategy across Medium Horizon 2030," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    5. Yaghoubi, Sina & Mousavi, Seyyed Mojtaba & Babapoor, Aziz & Binazadeh, Mojtaba & Lai, Chin Wei & Althomali, Raed H. & Rahman, Mohammed M. & Chiang, Wei-Hung, 2024. "Photocatalysts for solar energy conversion: Recent advances and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    6. Kristia Kristia & Sándor Kovács & Zoltán Bács & Mohammad Fazle Rabbi, 2023. "A Bibliometric Analysis of Sustainable Food Consumption: Historical Evolution, Dominant Topics and Trends," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
    7. Agyeman, Stephen Duah & Lin, Boqiang, 2022. "Nonrenewable and renewable energy substitution, and low–carbon energy transition: Evidence from North African countries," Renewable Energy, Elsevier, vol. 194(C), pages 378-395.
    8. Chowdhury, Mohammad Asaduzzaman & Ahmed, Shamim & Hossain, Nayem & Rana, Md. Masud & Aoyon, Hasanuzzaman & Ali, Md. Ramjan & Islam, Syed Rokibul & Hossain, Md. Jonayed & Chowdhury, Deep, 2023. "Enhancement of microbial fuel cell performance by introducing dosing materials in waste water to increase microorganism growth," Renewable Energy, Elsevier, vol. 219(P2).
    9. Atems, Bebonchu & Mette, Jehu & Lin, Guoyu & Madraki, Golshan, 2023. "Estimating and forecasting the impact of nonrenewable energy prices on US renewable energy consumption," Energy Policy, Elsevier, vol. 173(C).
    10. Lingling Zhou & Tao Shi & Qian Zhou, 2023. "Is ICT Development Conducive to Reducing the Vulnerability of Low-Carbon Energy? Evidence from OECD Countries," IJERPH, MDPI, vol. 20(3), pages 1-22, January.
    11. Tinta, Abdoulganiour Almame, 2023. "Education puzzle, financial inclusion, and energy substitution: Growth Scales," Energy Policy, Elsevier, vol. 175(C).
    12. Song, Malin & Zheng, Huanyu & Shen, Zhiyang & Chen, Boyang, 2023. "How financial technology affects energy transformation in China," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    13. Li, Yufan & Bi, Yuehong & Lin, Yashan & Wang, Hongyan & Sun, Ruirui, 2023. "Analysis of the soil heat balance of a solar-ground source absorption heat pump with the soil-based energy storage in the transition season," Energy, Elsevier, vol. 264(C).
    14. Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan," Energy, Elsevier, vol. 240(C).
    15. Xu, Tingting & Gao, Weijun & Qian, Fanyue & Li, Yanxue, 2022. "The implementation limitation of variable renewable energies and its impacts on the public power grid," Energy, Elsevier, vol. 239(PA).
    16. He, Ye & Wu, Hongbin & Wu, Andrew Y. & Li, Peng & Ding, Ming, 2024. "Optimized shared energy storage in a peer-to-peer energy trading market: Two-stage strategic model regards bargaining and evolutionary game theory," Renewable Energy, Elsevier, vol. 224(C).
    17. Bello, Mufutau Opeyemi & Ch'ng, Kean Siang, 2024. "Path to clean and sustainable energy from nuclear and renewable sources: Evidence from France," Utilities Policy, Elsevier, vol. 88(C).
    18. Yin, Linfei & Cai, Zhenjian, 2024. "Multimodal multi-objective hierarchical distributed consensus method for multimodal multi-objective economic dispatch of hierarchical distributed power systems," Energy, Elsevier, vol. 295(C).
    19. Das, Pronob & Das, Barun K. & Rahman, Mushfiqur & Hassan, Rakibul, 2022. "Evaluating the prospect of utilizing excess energy and creating employments from a hybrid energy system meeting electricity and freshwater demands using multi-objective evolutionary algorithms," Energy, Elsevier, vol. 238(PB).
    20. Cai, Qingsen & Luo, XingQi & Wang, Peng & Gao, Chunyang & Zhao, Peiyu, 2022. "Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application," Applied Energy, Elsevier, vol. 305(C).
    21. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    2. Bello, Mufutau Opeyemi & Ch'ng, Kean Siang, 2024. "Path to clean and sustainable energy from nuclear and renewable sources: Evidence from France," Utilities Policy, Elsevier, vol. 88(C).
    3. Opeyemi Bello, Mufutau & Adebola Solarin, Sakiru & Yee Yen, Yuen, 2018. "Interfuel Substitution, Hydroelectricity Consumption and CO2 Emissions Mitigation in Malaysia: Evidence from a Transcendental Logarithm (trans-log) Cost Function Framework," Working Papers 4, Department of Economics, University of Ilorin.
    4. Mufutau Opeyemi Bello & Sakiru Adebola Solarin, 2022. "Searching for sustainable electricity generation: The possibility of substituting coal and natural gas with clean energy," Energy & Environment, , vol. 33(1), pages 64-84, February.
    5. Lin, Boqiang & Zhu, Runqing & Raza, Muhammad Yousaf, 2022. "Fuel substitution and environmental sustainability in India: Perspectives of technical progress," Energy, Elsevier, vol. 261(PB).
    6. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    7. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2009. "On interfuel substitution : some international evidence," Policy Research Working Paper Series 5026, The World Bank.
    8. Hossain, A. K. M. Nurul & Serletis, Apostolos, 2020. "Biofuel substitution in the U.S. transportation sector," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    9. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
    10. Muhammad Yousaf Raza & Songlin Tang, 2022. "Inter-Fuel Substitution, Technical Change, and Carbon Mitigation Potential in Pakistan: Perspectives of Environmental Analysis," Energies, MDPI, vol. 15(22), pages 1-20, November.
    11. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
    12. Liu, Weisheng & Lin, Boqiang, 2021. "Electrification of rails in China: Its impact on energy conservation and emission reduction," Energy, Elsevier, vol. 226(C).
    13. Manish Gupta & Ramprasad Sengupta, 2013. "Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries," Review of Market Integration, India Development Foundation, vol. 5(3), pages 363-388, December.
    14. Haller, Stefanie A. & Hyland, Marie, 2014. "Capital–energy substitution: Evidence from a panel of Irish manufacturing firms," Energy Economics, Elsevier, vol. 45(C), pages 501-510.
    15. Dargay, Joyce M., 1980. "The Demand for Energy in Swedish Manufacturing," Working Paper Series 33, Research Institute of Industrial Economics, revised Aug 1982.
    16. Lin, Boqiang & Ahmad, Izhar, 2016. "Energy substitution effect on transport sector of Pakistan based on trans-log production function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1182-1193.
    17. Christopoulos, Dimitris K., 2000. "The demand for energy in Greek manufacturing," Energy Economics, Elsevier, vol. 22(5), pages 569-586, October.
    18. Sharimakin, Akinsehinwa, 2019. "Measuring the energy input substitution and output effects of energy price changes and the implications for the environment," Energy Policy, Elsevier, vol. 133(C).
    19. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
    20. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2015. "Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries," Applied Economics, Taylor & Francis Journals, vol. 47(14), pages 1438-1459, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221007684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.