IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1776-d342475.html
   My bibliography  Save this article

Ukraine Energy Sector Management Using Hybrid Renewable Energy Systems

Author

Listed:
  • Oleksandr Sabishchenko

    (Department of Finance, Accounting and Fundamental Economic Disciplines, Faculty of Economics and IT, National Academy of Management, Ushynskogo 15, 03151 Kyiv, Ukraine)

  • Rafał Rębilas

    (Department of Management, Faculty of Applied Sciences, WSB University, 41300 Dąbrowa Górnicza, Poland)

  • Norbert Sczygiol

    (Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42201 Czestochowa, Poland)

  • Mariusz Urbański

    (Faculty of Civil Engineering, Czestochowa University of Technology, 42201 Czestochowa, Poland)

Abstract

The Ukrainian energy sector is one of the most inflexible energy sectors in the world as a result of the almost complete depreciation of the equipment of the main sources of power supply: nuclear, thermal, and hydropower. In connection with existing problems, there is a need to develop and use new energy-saving technologies based on renewable energy sources. In this proposed research, a regression model of renewable energy growth in the energy sector of Ukraine was developed. The studied literature reveals that the independent use of individual functioning elements of renewable energy sources function as the primary power source that is not an optimal solution for stable energy supply. This study proposes the use of hybrid renewable energy systems, namely a combination of two or more renewable energy sources that will help each other to achieve higher energy efficiency, accelerate the growth of renewable energy in the share of the Ukrainian energy sector and/or improve functioning with battery energy storages. Moreover, the use of hybrid renewable energy systems in Ukraine will reduce the human impact on the environment, realize the potential of local renewable energy resources and also increase the share of electricity generation from renewable energy sources. Therefore, mechanisms for managing state regulation of stimulating the development of hybrid renewable energy systems have been developed.

Suggested Citation

  • Oleksandr Sabishchenko & Rafał Rębilas & Norbert Sczygiol & Mariusz Urbański, 2020. "Ukraine Energy Sector Management Using Hybrid Renewable Energy Systems," Energies, MDPI, vol. 13(7), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1776-:d:342475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1776/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fadly, Dalia, 2019. "Low-carbon transition: Private sector investment in renewable energy projects in developing countries," World Development, Elsevier, vol. 122(C), pages 552-569.
    2. Johansson, Bengt, 2013. "Security aspects of future renewable energy systems–A short overview," Energy, Elsevier, vol. 61(C), pages 598-605.
    3. Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
    4. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2020. "Renewable energy consumption and economic growth nexus: Evidence from a threshold model," Energy Policy, Elsevier, vol. 139(C).
    5. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    6. Luqman, Muhammad & Ahmad, Najid & Bakhsh, Khuda, 2019. "Nuclear energy, renewable energy and economic growth in Pakistan: Evidence from non-linear autoregressive distributed lag model," Renewable Energy, Elsevier, vol. 139(C), pages 1299-1309.
    7. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun & Wu, Jiahui & Fan, Xiaochao & Xu, Qidan, 2020. "Dynamic environmental economic dispatch of hybrid renewable energy systems based on tradable green certificates," Energy, Elsevier, vol. 193(C).
    8. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Hou, Fujun & Sinha, Avik, 2018. "¬¬¬¬¬¬From Nonrenewable to Renewable Energy and Its Impact on Economic Growth: Silver Line of Research & Development Expenditures in APEC Countries," MPRA Paper 90611, University Library of Munich, Germany, revised 10 Dec 2018.
    9. Hafezali Iqbal Hussain & Beata Slusarczyk & Fakarudin Kamarudin & Hassanudin Mohd Thas Thaker & Katarzyna Szczepańska-Woszczyna, 2020. "An Investigation of an Adaptive Neuro-Fuzzy Inference System to Predict the Relationship among Energy Intensity, Globalization, and Financial Development in Major ASEAN Economies," Energies, MDPI, vol. 13(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahoor Ahmed & Ugur Korkut Pata, 2025. "Unveiling the influence of environmental taxes, socioeconomic conditions, renewable energy, and financial globalization on environmental sustainability," Natural Resources Forum, Blackwell Publishing, vol. 49(2), pages 1037-1056, May.
    2. Ivan Trifonov & Dmitry Trukhan & Yury Koshlich & Valeriy Prasolov & Beata Ślusarczyk, 2021. "Influence of the Share of Renewable Energy Sources on the Level of Energy Security in EECCA Countries," Energies, MDPI, vol. 14(4), pages 1-15, February.
    3. Nazim Hajiyev & Klaudia Smoląg & Ali Abbasov & Valeriy Prasolov, 2020. "Energy War Strategies: The 21st Century Experience," Energies, MDPI, vol. 13(21), pages 1-15, November.
    4. Smirnova, Elena & Kot, Sebastian & Kolpak, Eugeny & Shestak, Viktor, 2021. "Governmental support and renewable energy production: A cross-country review," Energy, Elsevier, vol. 230(C).
    5. Marko Milojević & Paweł Nowodziński & Ivica Terzić & Svetlana Danshina, 2021. "Households’ Energy Autonomy: Risks or Benefits for a State?," Energies, MDPI, vol. 14(7), pages 1-16, April.
    6. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    7. Iurii Prokazov & Vladimir Gorbanyov & Vadim Samusenkov & Irina Razinkina & Monika Chłąd, 2021. "RETRACTED: Assessing the Flexibility of Renewable Energy Multinational Corporations," Energies, MDPI, vol. 14(13), pages 1-19, June.
    8. Małgorzata Rutkowska & Paweł Bartoszczuk & Uma Shankar Singh, 2021. "Management of Green Consumer Values in Renewable Energy Sources and Eco Innovation in India," Energies, MDPI, vol. 14(21), pages 1-17, October.
    9. Aleksandra Pavlović & Milica Njegovan & Andrea Ivanišević & Mladen Radišić & Aleksandar Takači & Alpar Lošonc & Sebastian Kot, 2021. "The Impact of Foreign Direct Investments and Economic Growth on Environmental Degradation: The Case of the Balkans," Energies, MDPI, vol. 14(3), pages 1-21, January.
    10. Krzysztof Janasz & Norbert Obrycki & Joanna Wisniewska, 2022. "Modelling the Energy Sector in Ukraine with RES Development Scenarios," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 283-307.
    11. Darya Pyatkina & Tamara Shcherbina & Vadim Samusenkov & Irina Razinkina & Mariusz Sroka, 2021. "Modeling and Management of Power Supply Enterprises’ Cash Flows," Energies, MDPI, vol. 14(4), pages 1-17, February.
    12. Marko Milojević & Mariusz Urbański & Ivica Terzić & Valeriy Prasolov, 2020. "Impact of Non-Financial Factors on the Effectiveness of Audits in Energy Companies," Energies, MDPI, vol. 13(23), pages 1-17, November.
    13. Ayyildiz, Ertugrul, 2022. "Fermatean fuzzy step-wise Weight Assessment Ratio Analysis (SWARA) and its application to prioritizing indicators to achieve sustainable development goal-7," Renewable Energy, Elsevier, vol. 193(C), pages 136-148.
    14. Oleg Bazaluk & Kateryna Sai & Vasyl Lozynskyi & Mykhailo Petlovanyi & Pavlo Saik, 2021. "Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea," Energies, MDPI, vol. 14(5), pages 1-24, March.
    15. Jhuma Sadhukhan & Mark Christensen, 2021. "An In-Depth Life Cycle Assessment (LCA) of Lithium-Ion Battery for Climate Impact Mitigation Strategies," Energies, MDPI, vol. 14(17), pages 1-20, September.
    16. Sameh Mahjoub & Larbi Chrifi-Alaoui & Saïd Drid & Nabil Derbel, 2023. "Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production," Energies, MDPI, vol. 16(4), pages 1-26, February.
    17. Róbert Štefko & Petra Vašaničová & Sylvia Jenčová & Aneta Pachura, 2021. "Management and Economic Sustainability of the Slovak Industrial Companies with Medium Energy Intensity," Energies, MDPI, vol. 14(2), pages 1-15, January.
    18. Mufutau Opeyemi, Bello, 2021. "Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy," Energy, Elsevier, vol. 228(C).
    19. Bilal Khalid & Mariusz Urbański & Monika Kowalska-Sudyka & Elżbieta Wysłocka & Barbara Piontek, 2021. "Evaluating Consumers’ Adoption of Renewable Energy," Energies, MDPI, vol. 14(21), pages 1-15, November.
    20. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana & Magdalena Tutak & Jarosław Brodny, 2021. "Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector," Energies, MDPI, vol. 14(9), pages 1-30, April.
    21. Svetlana Revinova & Konstantin Gomonov, 2023. "A Comparative Analysis of Government Policies to Promote Energy Efficiency in the US, China, and India," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 291-306, January.
    22. Wang, Juan & Li, Ziming & Wu, Tong & Wu, Siyu & Yin, Tingwei, 2022. "The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector," Energy, Elsevier, vol. 255(C).
    23. Rehman, Obaid ur & Ali, Yousaf & Sabir, Muhammad, 2022. "Risk assessment and mitigation for electric power sectors: A developing country's perspective," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    24. Md. Rashedul Islam & Homeyra Akter & Harun Or Rashid Howlader & Tomonobu Senjyu, 2022. "Optimal Sizing and Techno-Economic Analysis of Grid-Independent Hybrid Energy System for Sustained Rural Electrification in Developing Countries: A Case Study in Bangladesh," Energies, MDPI, vol. 15(17), pages 1-21, September.
    25. Manuela Tvaronavičienė, 2023. "Towards Renewable Energy: Opportunities and Challenges," Energies, MDPI, vol. 16(5), pages 1-2, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarsar, Lamiae, 2025. "Green hydrogen impact on economic growth: A cross-sectional analysis of 29 European countries," Renewable Energy, Elsevier, vol. 246(C).
    2. Abdul Rehman & Hengyun Ma & Magdalena Radulescu & Crenguta Ileana Sinisi & Loredana Maria Paunescu & MD Shabbir Alam & Rafael Alvarado, 2021. "The Energy Mix Dilemma and Environmental Sustainability: Interaction among Greenhouse Gas Emissions, Nuclear Energy, Urban Agglomeration, and Economic Growth," Energies, MDPI, vol. 14(22), pages 1-21, November.
    3. Mariola Piłatowska & Andrzej Geise, 2021. "Impact of Clean Energy on CO 2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries," Energies, MDPI, vol. 14(4), pages 1-24, February.
    4. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    5. Pablo-Romero, María P. & Pozo-Barajas, Rafael & Washburn, Christian, 2024. "Productive electricity and non-electricity consumption effects on economic growth: A Latin America analysis," Energy, Elsevier, vol. 305(C).
    6. Doytch, Nadia & Narayan, Seema, 2021. "Does transitioning towards renewable energy accelerate economic growth? An analysis of sectoral growth for a dynamic panel of countries," Energy, Elsevier, vol. 235(C).
    7. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Environmental stewardship: Analyzing the dynamic impact of renewable energy, foreign remittances, and globalization index on China's CO2 emissions," Renewable Energy, Elsevier, vol. 201(P1), pages 418-425.
    8. Simplice A. Asongu & Chimere O. Iheonu & Kingsley O. Odo, 2019. "The Conditional Relationship between Renewable Energy and Environmental Quality in Sub-Saharan Africa," Working Papers of the African Governance and Development Institute. 19/074, African Governance and Development Institute..
    9. Salari, Mahmoud & Kelly, Inas & Doytch, Nadia & Javid, Roxana J., 2021. "Economic growth and renewable and non-renewable energy consumption: Evidence from the U.S. states," Renewable Energy, Elsevier, vol. 178(C), pages 50-65.
    10. Wang, Qiang & Dong, Zequn & Li, Rongrong & Wang, Lili, 2022. "Renewable energy and economic growth: New insight from country risks," Energy, Elsevier, vol. 238(PC).
    11. Sarsar, Lamiae & Echaoui, Abdellah, 2024. "Empirical analysis of the economic complexity boost on the impact of energy transition on economic growth: A panel data study of 124 countries," Energy, Elsevier, vol. 294(C).
    12. Chang, Chiu-Lan & Fang, Ming, 2022. "Renewable energy-led growth hypothesis: New insights from BRICS and N-11 economies," Renewable Energy, Elsevier, vol. 188(C), pages 788-800.
    13. Mingwei Li & Xianzhong Mu & Liang Xie & Zhen Zeng & Guangwen Hu, 2024. "Investigating the heterogeneous nonlinear effect of renewable energy development on green total factor productivity: evidence from provincial-level data in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 13429-13453, May.
    14. Daniel Ştefan Armeanu & Ştefan Cristian Gherghina & George Pasmangiu, 2019. "Exploring the Causal Nexus between Energy Consumption, Environmental Pollution and Economic Growth: Empirical Evidence from Central and Eastern Europe," Energies, MDPI, vol. 12(19), pages 1-27, September.
    15. Kousksou, T. & Allouhi, A. & Belattar, M. & Jamil, A. & El Rhafiki, T. & Zeraouli, Y., 2015. "Morocco's strategy for energy security and low-carbon growth," Energy, Elsevier, vol. 84(C), pages 98-105.
    16. Adekoya, Oluwasegun B., 2021. "Revisiting oil consumption-economic growth nexus: Resource-curse and scarcity tales," Resources Policy, Elsevier, vol. 70(C).
    17. Pablo Ponce & José Álvarez-García & Johanna Medina & María de la Cruz del Río-Rama, 2021. "Financial Development, Clean Energy, and Human Capital: Roadmap towards Sustainable Growth in América Latina," Energies, MDPI, vol. 14(13), pages 1-16, June.
    18. Namahoro, Jean Pierre & Wu, Qiaosheng & Xiao, Haijun & Zhou, Na, 2021. "The asymmetric nexus of renewable energy consumption and economic growth: New evidence from Rwanda," Renewable Energy, Elsevier, vol. 174(C), pages 336-346.
    19. Tabata, Tomohiro & Okuda, Takaaki, 2012. "Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan," Energy, Elsevier, vol. 45(1), pages 944-951.
    20. Nazim Hajiyev & Klaudia Smoląg & Ali Abbasov & Valeriy Prasolov, 2020. "Energy War Strategies: The 21st Century Experience," Energies, MDPI, vol. 13(21), pages 1-15, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1776-:d:342475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.