IDEAS home Printed from
   My bibliography  Save this article

Structural optimization and carbon taxation in China's commercial sector


  • Wang, Ailun
  • Lin, Boqiang


Given China's economic transformation and upgrading process, the green development of commercial sector is more and more important. Based on the trans-log cost function, this paper calculates the inter-factor and inter-fuel substitution effects in China's commercial sector from 1980 to 2016. Besides, the paper further analyzes the driving factors of the dynamic changes in energy intensity and the impact of carbon taxation in China's commercial sector. The main conclusions are as follows: (1) Capital, labor, and energy in China's commercial sector negatively correlate with their prices, and the self-price elasticities of energy, labor, and capital decline in turn. (2) The relationship between labor and capital is substitutional, and the same relationship is found when after considering labor and energy, and that between energy and capital is complementary. (3) Demand for energy sources negatively correlates with their prices, and there exist complementary relationships between energy sources. (4) Technical effects and substitution effects can effectively promote the decline of energy intensity in China's commercial sector. (5) Implementing a 50 RMB/tonne carbon taxation will lead to 5.50% energy savings and 6.21% CO2 reduction.

Suggested Citation

  • Wang, Ailun & Lin, Boqiang, 2020. "Structural optimization and carbon taxation in China's commercial sector," Energy Policy, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:enepol:v:140:y:2020:i:c:s0301421520301956
    DOI: 10.1016/j.enpol.2020.111442

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
    2. Smyth, Russell & Narayan, Paresh Kumar & Shi, Hongliang, 2011. "Substitution between energy and classical factor inputs in the Chinese steel sector," Applied Energy, Elsevier, vol. 88(1), pages 361-367, January.
    3. Patricia Renou-Maissant, 1999. "Interfuel Competition in the Industrial Sector of Seven OECD Countries," Post-Print hal-02562575, HAL.
    4. Thompson, Peter & Taylor, Timothy G, 1995. "The Capital-Energy Substitutability Debate: A New Look," The Review of Economics and Statistics, MIT Press, vol. 77(3), pages 565-569, August.
    5. Griffin, James M, 1981. "Engineering and Econometric Interpretations of Energy-Capital Complementarity: Comment," American Economic Review, American Economic Association, vol. 71(5), pages 1100-1104, December.
    6. Lin, Boqiang & Li, Jianglong, 2014. "The rebound effect for heavy industry: Empirical evidence from China," Energy Policy, Elsevier, vol. 74(C), pages 589-599.
    7. Yan, Zheming & Ouyang, Xiaoling & Du, Kerui, 2019. "Economy-wide estimates of energy rebound effect: Evidence from China's provinces," Energy Economics, Elsevier, vol. 83(C), pages 389-401.
    8. Yang, Pingjian & He, Gang & Mao, Guozhu & Liu, Yong & Xu, Mingzhu & Guo, Huaicheng & Liu, Xi, 2013. "Sustainability needs and practices assessment in the building industry of China," Energy Policy, Elsevier, vol. 57(C), pages 212-220.
    9. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    10. Zou, Gao Lu, 2012. "The long-term relationships among China's energy consumption sources and adjustments to its renewable energy policy," Energy Policy, Elsevier, vol. 47(C), pages 456-467.
    11. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    12. Chang, Kuo-Ping, 1994. "Capital-energy substitution and the multi-level CES production function," Energy Economics, Elsevier, vol. 16(1), pages 22-26, January.
    13. Hudson, Edward A & Jorgenson, Dale W, 1978. "Energy Policy and U.S. Economic Growth," American Economic Review, American Economic Association, vol. 68(2), pages 118-123, May.
    14. Boqiang Lin & Ailun Wang, 2016. "Regional Energy Efficiency of China’s Commercial Sector: An Emerging Energy Consumer," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(12), pages 2818-2836, December.
    15. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
    16. Floros, Nikolaos & Vlachou, Andriana, 2005. "Energy demand and energy-related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax," Energy Economics, Elsevier, vol. 27(3), pages 387-413, May.
    17. Welsch, Heinz & Ochsen, Carsten, 2005. "The determinants of aggregate energy use in West Germany: factor substitution, technological change, and trade," Energy Economics, Elsevier, vol. 27(1), pages 93-111, January.
    18. Ouyang, Xiaoling & Gao, Beiying & Du, Kerui & Du, Gang, 2018. "Industrial sectors' energy rebound effect: An empirical study of Yangtze River Delta urban agglomeration," Energy, Elsevier, vol. 145(C), pages 408-416.
    19. Renou-Maissant, Patricia, 1999. "Interfuel competition in the industrial sector of seven OECD countries," Energy Policy, Elsevier, vol. 27(2), pages 99-110, February.
    20. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    21. Lin, Boqiang & Wang, Ailun, 2015. "Estimating energy conservation potential in China's commercial sector," Energy, Elsevier, vol. 82(C), pages 147-156.
    22. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    23. Su, Xuanming & Zhou, Weisheng & Nakagami, Ken'Ichi & Ren, Hongbo & Mu, Hailin, 2012. "Capital stock-labor-energy substitution and production efficiency study for China," Energy Economics, Elsevier, vol. 34(4), pages 1208-1213.
    24. Cho, Won G. & Nam, Kiseok & Pagan, Jose A., 2004. "Economic growth and interfactor/interfuel substitution in Korea," Energy Economics, Elsevier, vol. 26(1), pages 31-50, January.
    25. Hisnanick, John J. & Kyer, Ben L., 1995. "Assessing a disaggregated energy input : Using confidence intervals around translog elasticity estimates," Energy Economics, Elsevier, vol. 17(2), pages 125-132, April.
    26. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
    27. Wang, Ailun & Lin, Boqiang, 2018. "Dynamic change in energy and CO2 performance of China's commercial sector: A regional comparative study," Energy Policy, Elsevier, vol. 119(C), pages 113-122.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Sun, Chuanwang & Yi, Xiangyu & Ma, Tiemeng & Cai, Weiyi & Wang, Wei, 2022. "Evaluating the optimal air pollution reduction rate: Evidence from the transmission mechanism of air pollution effects on public subjective well-being," Energy Policy, Elsevier, vol. 161(C).
    2. Wang, Ailun & Hu, Shuo & Lin, Boqiang, 2021. "Emission abatement cost in China with consideration of technological heterogeneity," Applied Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
    2. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    3. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
    4. Lin, Boqiang & Xie, Chunping, 2014. "Energy substitution effect on transport industry of China-based on trans-log production function," Energy, Elsevier, vol. 67(C), pages 213-222.
    5. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    6. Lin, Boqiang & Ahmad, Izhar, 2016. "Energy substitution effect on transport sector of Pakistan based on trans-log production function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1182-1193.
    7. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    8. Lin, Boqiang & Atsagli, Philip, 2017. "Inter-fuel substitution possibilities in South Africa: A translog production function approach," Energy, Elsevier, vol. 121(C), pages 822-831.
    9. Kim, Jihyo & Heo, Eunnyeong, 2013. "Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries," Energy Economics, Elsevier, vol. 40(C), pages 81-89.
    10. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    11. Runqing Zhu & Boqiang Lin, 2022. "How Does the Carbon Tax Influence the Energy and Carbon Performance of China’s Mining Industry?," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    12. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    13. Boqiang Lin & Kui Liu, 2017. "Energy Substitution Effect on China’s Heavy Industry: Perspectives of a Translog Production Function and Ridge Regression," Sustainability, MDPI, vol. 9(11), pages 1-15, October.
    14. Beckman, Jayson & Hertel, Thomas & Tyner, Wallace, 2011. "Validating energy-oriented CGE models," Energy Economics, Elsevier, vol. 33(5), pages 799-806, September.
    15. Dong Hee Suh, 2015. "Declining Energy Intensity in the U.S. Agricultural Sector: Implications for Factor Substitution and Technological Change," Sustainability, MDPI, vol. 7(10), pages 1-14, September.
    16. Haishu Qiao & Ying Li & Julien Chevallier & Bangzhu Zhu, 2016. "Capital–energy substitution in China: regional differences and dynamic evolution," Post-Communist Economies, Taylor & Francis Journals, vol. 28(4), pages 421-435, October.
    17. Li, Jianglong & Sun, Chuanwang, 2018. "Towards a low carbon economy by removing fossil fuel subsidies?," China Economic Review, Elsevier, vol. 50(C), pages 17-33.
    18. Suh, Dong Hee, 2015. "Identifying Factor Substitution and Energy Intensity in the U.S. Agricultural Sector," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205264, Agricultural and Applied Economics Association.
    19. Bardazzi, Rossella & Oropallo, Filippo & Pazienza, Maria Grazia, 2015. "Do manufacturing firms react to energy prices? Evidence from Italy," Energy Economics, Elsevier, vol. 49(C), pages 168-181.
    20. Wang, Xiaolei & Bai, Mengqi & Xie, Chunping, 2019. "Investigating CO2 mitigation potentials and the impact of oil price distortion in China's transport sector," Energy Policy, Elsevier, vol. 130(C), pages 320-327.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:140:y:2020:i:c:s0301421520301956. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.