IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp576-584.html
   My bibliography  Save this article

Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification

Author

Listed:
  • Li, Qi
  • Hu, Guiping

Abstract

An advanced biofuels supply chain is proposed to reduce biomass transportation costs and take advantage of the economics of scale for a gasification facility. In this supply chain, biomass is converted to bio-oil at widely distributed small-scale fast pyrolysis plants, and after bio-oil gasification, the syngas is upgraded to transportation fuels at a centralized biorefinery. A two-stage stochastic programming is formulated to maximize biofuel producers' annual profit considering uncertainties in the supply chain for this pathway. The first stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants as well as the centralized biorefinery, while the second stage determines the biomass and biofuels flows. A case study based on Iowa in the U.S. illustrates that it is economically feasible to meet desired demand using corn stover as the biomass feedstock. The results show that the locations of fast pyrolysis plants are sensitive to uncertainties while the capacity levels are insensitive. The stochastic model outperforms the deterministic model in the stochastic environment, especially when there is insufficient biomass. Also, farmers' participation can have a significant impact on the profitability and robustness of this supply chain.

Suggested Citation

  • Li, Qi & Hu, Guiping, 2014. "Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification," Energy, Elsevier, vol. 74(C), pages 576-584.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:576-584
    DOI: 10.1016/j.energy.2014.07.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214008457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.07.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wetterlund, Elisabeth & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg, 2012. "Optimal localisation of biofuel production on a European scale," Energy, Elsevier, vol. 41(1), pages 462-472.
    2. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    3. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Gasification of lignocellulosic biomass char obtained from pyrolysis: Kinetic and evolved gas analyses," Energy, Elsevier, vol. 71(C), pages 456-467.
    4. Osmani, Atif & Zhang, Jun, 2013. "Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties," Energy, Elsevier, vol. 59(C), pages 157-172.
    5. Robert Perlack, Robert & Eaton, Lawrence & Thurhollow, Anthony & Langholtz, Matt & De La Torre Ugarte, Daniel, 2011. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry," MPRA Paper 89324, University Library of Munich, Germany, revised 2011.
    6. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    7. Papapostolou, Christiana & Kondili, Emilia & Kaldellis, John K., 2011. "Development and implementation of an optimisation model for biofuels supply chain," Energy, Elsevier, vol. 36(10), pages 6019-6026.
    8. Nixon, J.D. & Dey, P.K. & Davies, P.A. & Sagi, S. & Berry, R.F., 2014. "Supply chain optimisation of pyrolysis plant deployment using goal programming," Energy, Elsevier, vol. 68(C), pages 262-271.
    9. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    10. Timilsina, Govinda R. & Shrestha, Ashish, 2011. "How much hope should we have for biofuels?," Energy, Elsevier, vol. 36(4), pages 2055-2069.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    2. Fu, D.Z. & Zheng, Z.Y. & Shi, H.B. & Xiao, Rui & Huang, G.H. & Li, Y.P., 2017. "A multi-fuel management model for a community-level district heating system under multiple uncertainties," Energy, Elsevier, vol. 128(C), pages 337-356.
    3. Zheng, Ji-Lu & Zhu, Ya-Hong & Dong, Yan-Yan & Chen, Yue & Zhu, Ming-Qiang, 2023. "Techno-economic analysis and life cycle assessment of industrial production of ammonia via bio-oil conversion," Energy, Elsevier, vol. 280(C).
    4. Li, Yuanzhe, 2019. "Modeling Bioenergy Supply Chains: Feedstocks Pretreatment, Integrated System Design Under Uncertainty," Institute of Transportation Studies, Working Paper Series qt1539g5sj, Institute of Transportation Studies, UC Davis.
    5. Debnath, Biswajit & El-Hassani, Rihab & Chattopadhyay, Amit K. & Kumar, T. Krishna & Ghosh, Sadhan K. & Baidya, Rahul, 2022. "Time evolution of a Supply Chain Network: Kinetic modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    6. Zheng, Ji-Lu & Zhu, Ya-Hong & Su, Hong-Yu & Sun, Guo-Tao & Kang, Fu-Ren & Zhu, Ming-Qiang, 2022. "Life cycle assessment and techno-economic analysis of fuel ethanol production via bio-oil fermentation based on a centralized-distribution model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Fattahi, Mohammad & Govindan, Kannan, 2018. "A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 534-567.
    8. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Zheng, Ji-Lu & Zhu, Ya-Hong & Zhu, Ming-Qiang & Wu, Hai-Tang & Sun, Run-Cang, 2018. "Bio-oil gasification using air - Steam as gasifying agents in an entrained flow gasifier," Energy, Elsevier, vol. 142(C), pages 426-435.
    10. Yılmaz Balaman, Şebnem & Wright, Daniel G. & Scott, James & Matopoulos, Aristides, 2018. "Network design and technology management for waste to energy production: An integrated optimization framework under the principles of circular economy," Energy, Elsevier, vol. 143(C), pages 911-933.
    11. Zheng, Ji-Lu & Zhu, Ya-Hong & Dong, Yan-Yan & Zhu, Ming-Qiang, 2023. "Life cycle water consumption of bio-oil fermentation for bio-ethanol production based on a distributed-centralized model," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    2. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    3. Aui, Alvina & Wang, Yu, 2022. "Post-RFS supports for cellulosic ethanol: Evaluation of economic and environmental impacts of alternative policies," Energy Policy, Elsevier, vol. 170(C).
    4. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    5. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    6. Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.
    7. Moschini, GianCarlo & Cui, Jingbo & Lapan, Harvey E., 2012. "Economics of Biofuels: An Overview of Policies, Impacts and Prospects," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(3), pages 1-28, December.
    8. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    9. Duarte, Alexandra E. & Sarache, William A. & Costa, Yasel J., 2014. "A facility-location model for biofuel plants: Applications in the Colombian context," Energy, Elsevier, vol. 72(C), pages 476-483.
    10. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    12. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    13. Osmani, Atif & Zhang, Jun, 2013. "Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties," Energy, Elsevier, vol. 59(C), pages 157-172.
    14. Azadeh, Ali & Vafa Arani, Hamed & Dashti, Hossein, 2014. "A stochastic programming approach towards optimization of biofuel supply chain," Energy, Elsevier, vol. 76(C), pages 513-525.
    15. Svanberg, Martin & Ellis, Joanne & Lundgren, Joakim & Landälv, Ingvar, 2018. "Renewable methanol as a fuel for the shipping industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1217-1228.
    16. Connolly, D. & Mathiesen, B.V. & Ridjan, I., 2014. "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system," Energy, Elsevier, vol. 73(C), pages 110-125.
    17. Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
    18. Lixia H. Lambert & Eric A. DeVuyst & Burton C. English & Rodney Holcomb, 2021. "Analyzing the Trade-Offs between Meeting Biorefinery Production Capacity and Feedstock Supply Cost: A Chance Constrained Approach," Energies, MDPI, vol. 14(16), pages 1-13, August.
    19. Sharma, Bijay P. & Yu, T. Edward & English, Burton C. & Boyer, Christopher N. & Larson, James A., 2020. "Impact of government subsidies on a cellulosic biofuel sector with diverse risk preferences toward feedstock uncertainty," Energy Policy, Elsevier, vol. 146(C).
    20. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 51-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:576-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.