IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp262-271.html
   My bibliography  Save this article

Supply chain optimisation of pyrolysis plant deployment using goal programming

Author

Listed:
  • Nixon, J.D.
  • Dey, P.K.
  • Davies, P.A.
  • Sagi, S.
  • Berry, R.F.

Abstract

This paper presents a goal programming model to optimise the deployment of pyrolysis plants in Punjab, India. Punjab has an abundance of waste straw and pyrolysis can convert this waste into alternative bio-fuels, which will facilitate the provision of valuable energy services and reduce open field burning. A goal programming model is outlined and demonstrated in two case study applications: small scale operations in villages and large scale deployment across Punjab's districts. To design the supply chain, optimal decisions for location, size and number of plants, downstream energy applications and feedstocks processed are simultaneously made based on stakeholder requirements for capital cost, payback period and production cost of bio-oil and electricity. The model comprises quantitative data obtained from primary research and qualitative data gathered from farmers and potential investors. The Punjab district of Fatehgarh Sahib is found to be the ideal location to initially utilise pyrolysis technology. We conclude that goal programming is an improved method over more conventional methods used in the literature for project planning in the field of bio-energy. The model and findings developed from this study will be particularly valuable to investors, plant developers and municipalities interested in waste to energy in India and elsewhere.

Suggested Citation

  • Nixon, J.D. & Dey, P.K. & Davies, P.A. & Sagi, S. & Berry, R.F., 2014. "Supply chain optimisation of pyrolysis plant deployment using goal programming," Energy, Elsevier, vol. 68(C), pages 262-271.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:262-271
    DOI: 10.1016/j.energy.2014.02.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214001923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yongxi & Chen, Chien-Wei & Fan, Yueyue, 2010. "Multistage optimization of the supply chains of biofuels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 820-830, November.
    2. Nhantumbo, I. & Dent, J. B. & Kowero, G., 2001. "Goal programming: Application in the management of the miombo woodland in Mozambique," European Journal of Operational Research, Elsevier, vol. 133(2), pages 310-322, January.
    3. Singh, Jasvinder & Gu, Sai, 2010. "Biomass conversion to energy in India--A critique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1367-1378, June.
    4. Frombo, Francesco & Minciardi, Riccardo & Robba, Michela & Sacile, Roberto, 2009. "A decision support system for planning biomass-based energy production," Energy, Elsevier, vol. 34(3), pages 362-369.
    5. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2009. "Providing electricity access to remote areas in India: Niche areas for decentralized electricity supply," Renewable Energy, Elsevier, vol. 34(2), pages 430-434.
    6. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    7. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    8. Ballarin, A. & Vecchiato, D. & Tempesta, T. & Marangon, F. & Troiano, S., 2011. "Biomass energy production in agriculture: A weighted goal programming analysis," Energy Policy, Elsevier, vol. 39(3), pages 1123-1131, March.
    9. Nixon, J.D. & Dey, P.K. & Ghosh, S.K. & Davies, P.A., 2013. "Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process," Energy, Elsevier, vol. 59(C), pages 215-223.
    10. Nixon, J.D. & Dey, P.K. & Davies, P.A., 2010. "Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process," Energy, Elsevier, vol. 35(12), pages 5230-5240.
    11. van Dyken, Silke & Bakken, Bjorn H. & Skjelbred, Hans I., 2010. "Linear mixed-integer models for biomass supply chains with transport, storage and processing," Energy, Elsevier, vol. 35(3), pages 1338-1350.
    12. Scott, James A. & Ho, William & Dey, Prasanta K., 2012. "A review of multi-criteria decision-making methods for bioenergy systems," Energy, Elsevier, vol. 42(1), pages 146-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Ivanov, Boyan & Stoyanov, Stoyan, 2016. "A mathematical model formulation for the design of an integrated biodiesel-petroleum diesel blends system," Energy, Elsevier, vol. 99(C), pages 221-236.
    3. Zhong, Jia & Yu, T. Edward & Larson, James A. & English, Burton C. & Fu, Joshua S. & Calcagno, James, 2016. "Analysis of environmental and economic tradeoffs in switchgrass supply chains for biofuel production," Energy, Elsevier, vol. 107(C), pages 791-803.
    4. Cinzia Colapinto & Raja Jayaraman & Simone Marsiglio, 2017. "Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review," Annals of Operations Research, Springer, vol. 251(1), pages 7-40, April.
    5. Jones, Dylan & Florentino, Helenice & Cantane, Daniela & Oliveira, Rogerio, 2016. "An extended goal programming methodology for analysis of a network encompassing multiple objectives and stakeholders," European Journal of Operational Research, Elsevier, vol. 255(3), pages 845-855.
    6. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    7. Roy, Poritosh & Dias, Goretty, 2017. "Prospects for pyrolysis technologies in the bioenergy sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 59-69.
    8. Li, Qi & Hu, Guiping, 2014. "Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification," Energy, Elsevier, vol. 74(C), pages 576-584.
    9. Wątróbski, Jarosław & Jankowski, Jarosław & Ziemba, Paweł & Karczmarczyk, Artur & Zioło, Magdalena, 2019. "Generalised framework for multi-criteria method selection," Omega, Elsevier, vol. 86(C), pages 107-124.
    10. Nixon, J.D., 2016. "Designing and optimising anaerobic digestion systems: A multi-objective non-linear goal programming approach," Energy, Elsevier, vol. 114(C), pages 814-822.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azadeh, Ali & Vafa Arani, Hamed & Dashti, Hossein, 2014. "A stochastic programming approach towards optimization of biofuel supply chain," Energy, Elsevier, vol. 76(C), pages 513-525.
    2. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    3. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    4. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    5. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    6. Nixon, J.D. & Dey, P.K. & Davies, P.A., 2012. "The feasibility of hybrid solar-biomass power plants in India," Energy, Elsevier, vol. 46(1), pages 541-554.
    7. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    8. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.
    9. Nixon, J.D. & Dey, P.K. & Ghosh, S.K. & Davies, P.A., 2013. "Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process," Energy, Elsevier, vol. 59(C), pages 215-223.
    10. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    11. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    12. Nuraini Rahim & Lazim Abdullah & Binyamin Yusoff, 2020. "A Border Approximation Area Approach Considering Bipolar Neutrosophic Linguistic Variable for Sustainable Energy Selection," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    13. Azadeh, Ali & Vafa Arani, Hamed, 2016. "Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach," Renewable Energy, Elsevier, vol. 93(C), pages 383-403.
    14. Karatas, Mumtaz & Sulukan, Egemen & Karacan, Ilknur, 2018. "Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology," Energy, Elsevier, vol. 153(C), pages 890-912.
    15. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    16. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    17. Hojatollah Khedrigharibvand & Hossein Azadi & Dereje Teklemariam & Ehsan Houshyar & Philippe Maeyer & Frank Witlox, 2019. "Livelihood alternatives model for sustainable rangeland management: a review of multi-criteria decision-making techniques," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(1), pages 11-36, February.
    18. Jensen, Ida Græsted & Münster, Marie & Pisinger, David, 2017. "Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses," European Journal of Operational Research, Elsevier, vol. 262(2), pages 744-758.
    19. Doukas, Haris, 2013. "Modelling of linguistic variables in multicriteria energy policy support," European Journal of Operational Research, Elsevier, vol. 227(2), pages 227-238.
    20. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:262-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.